export_tflite.py 3.96 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

r"""Binary to convert a saved model to tflite model.

It requires a SavedModel exported using export_saved_model.py with batch size 1
and input type `tflite`, and using the same config file used for exporting saved
model. It includes optional post-training quantization. When using integer
quantization, calibration steps need to be provided to calibrate model input.

To convert a SavedModel to a TFLite model:

EXPERIMENT_TYPE = XX
TFLITE_PATH = XX
SAVED_MOODEL_DIR = XX
CONFIG_FILE = XX
export_tflite --experiment=${EXPERIMENT_TYPE} \
              --saved_model_dir=${SAVED_MOODEL_DIR} \
              --tflite_path=${TFLITE_PATH} \
              --config_file=${CONFIG_FILE} \
              --quant_type=fp16 \
              --calibration_steps=500
"""
from absl import app
from absl import flags
from absl import logging

import tensorflow as tf
from official.core import exp_factory
from official.modeling import hyperparams
from official.vision import registry_imports  # pylint: disable=unused-import
from official.vision.serving import export_tflite_lib

FLAGS = flags.FLAGS

flags.DEFINE_string(
    'experiment',
    None,
    'experiment type, e.g. retinanet_resnetfpn_coco',
    required=True)
flags.DEFINE_multi_string(
    'config_file',
    default='',
    help='YAML/JSON files which specifies overrides. The override order '
    'follows the order of args. Note that each file '
    'can be used as an override template to override the default parameters '
    'specified in Python. If the same parameter is specified in both '
    '`--config_file` and `--params_override`, `config_file` will be used '
    'first, followed by params_override.')
flags.DEFINE_string(
    'params_override', '',
    'The JSON/YAML file or string which specifies the parameter to be overriden'
    ' on top of `config_file` template.')
flags.DEFINE_string(
    'saved_model_dir', None, 'The directory to the saved model.', required=True)
flags.DEFINE_string(
    'tflite_path', None, 'The path to the output tflite model.', required=True)
flags.DEFINE_string(
    'quant_type',
    default=None,
72
73
74
    help='Post training quantization type. Support `int8_fp32_fallback`, '
    '`int8_fp32_input_output`, `int8_full`, `fp16`, `qat`, '
    '`qat_fp32_input_output`, and `default`. See '
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    'https://www.tensorflow.org/lite/performance/post_training_quantization '
    'for more details.')
flags.DEFINE_integer('calibration_steps', 500,
                     'The number of calibration steps for integer model.')


def main(_) -> None:
  params = exp_factory.get_exp_config(FLAGS.experiment)
  if FLAGS.config_file is not None:
    for config_file in FLAGS.config_file:
      params = hyperparams.override_params_dict(
          params, config_file, is_strict=True)
  if FLAGS.params_override:
    params = hyperparams.override_params_dict(
        params, FLAGS.params_override, is_strict=True)

  params.validate()
  params.lock()

  logging.info('Converting SavedModel from %s to TFLite model...',
               FLAGS.saved_model_dir)
  tflite_model = export_tflite_lib.convert_tflite_model(
      saved_model_dir=FLAGS.saved_model_dir,
      quant_type=FLAGS.quant_type,
      params=params,
      calibration_steps=FLAGS.calibration_steps)

  with tf.io.gfile.GFile(FLAGS.tflite_path, 'wb') as fw:
    fw.write(tflite_model)

  logging.info('TFLite model converted and saved to %s.', FLAGS.tflite_path)


if __name__ == '__main__':
  app.run(main)