augment.py 55.2 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

15
"""Augmentation policies for enhanced image/video preprocessing.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16
17
18

AutoAugment Reference: https://arxiv.org/abs/1805.09501
RandAugment Reference: https://arxiv.org/abs/1909.13719
19
20
21
22
23
24
25
RandomErasing Reference: https://arxiv.org/abs/1708.04896
MixupAndCutmix:
  - Mixup: https://arxiv.org/abs/1710.09412
  - Cutmix: https://arxiv.org/abs/1905.04899

RandomErasing, Mixup and Cutmix are inspired by https://github.com/rwightman/pytorch-image-models

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
27
"""
import math
Dan Kondratyuk's avatar
Dan Kondratyuk committed
28
from typing import Any, List, Iterable, Optional, Text, Tuple
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
29

30
import numpy as np
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import tensorflow as tf

from tensorflow.python.keras.layers.preprocessing import image_preprocessing as image_ops


# This signifies the max integer that the controller RNN could predict for the
# augmentation scheme.
_MAX_LEVEL = 10.


def to_4d(image: tf.Tensor) -> tf.Tensor:
  """Converts an input Tensor to 4 dimensions.

  4D image => [N, H, W, C] or [N, C, H, W]
  3D image => [1, H, W, C] or [1, C, H, W]
  2D image => [1, H, W, 1]

  Args:
    image: The 2/3/4D input tensor.

  Returns:
    A 4D image tensor.

  Raises:
    `TypeError` if `image` is not a 2/3/4D tensor.

  """
  shape = tf.shape(image)
  original_rank = tf.rank(image)
  left_pad = tf.cast(tf.less_equal(original_rank, 3), dtype=tf.int32)
  right_pad = tf.cast(tf.equal(original_rank, 2), dtype=tf.int32)
  new_shape = tf.concat(
      [
          tf.ones(shape=left_pad, dtype=tf.int32),
          shape,
          tf.ones(shape=right_pad, dtype=tf.int32),
      ],
      axis=0,
  )
  return tf.reshape(image, new_shape)


def from_4d(image: tf.Tensor, ndims: tf.Tensor) -> tf.Tensor:
  """Converts a 4D image back to `ndims` rank."""
  shape = tf.shape(image)
  begin = tf.cast(tf.less_equal(ndims, 3), dtype=tf.int32)
  end = 4 - tf.cast(tf.equal(ndims, 2), dtype=tf.int32)
  new_shape = shape[begin:end]
  return tf.reshape(image, new_shape)


def _convert_translation_to_transform(translations: tf.Tensor) -> tf.Tensor:
  """Converts translations to a projective transform.

  The translation matrix looks like this:
    [[1 0 -dx]
     [0 1 -dy]
     [0 0 1]]

  Args:
    translations: The 2-element list representing [dx, dy], or a matrix of
      2-element lists representing [dx dy] to translate for each image. The
      shape must be static.

  Returns:
    The transformation matrix of shape (num_images, 8).

  Raises:
    `TypeError` if
      - the shape of `translations` is not known or
      - the shape of `translations` is not rank 1 or 2.

  """
  translations = tf.convert_to_tensor(translations, dtype=tf.float32)
  if translations.get_shape().ndims is None:
    raise TypeError('translations rank must be statically known')
  elif len(translations.get_shape()) == 1:
    translations = translations[None]
  elif len(translations.get_shape()) != 2:
    raise TypeError('translations should have rank 1 or 2.')
  num_translations = tf.shape(translations)[0]

  return tf.concat(
      values=[
          tf.ones((num_translations, 1), tf.dtypes.float32),
          tf.zeros((num_translations, 1), tf.dtypes.float32),
          -translations[:, 0, None],
          tf.zeros((num_translations, 1), tf.dtypes.float32),
          tf.ones((num_translations, 1), tf.dtypes.float32),
          -translations[:, 1, None],
          tf.zeros((num_translations, 2), tf.dtypes.float32),
      ],
      axis=1,
  )


def _convert_angles_to_transform(angles: tf.Tensor, image_width: tf.Tensor,
                                 image_height: tf.Tensor) -> tf.Tensor:
  """Converts an angle or angles to a projective transform.

  Args:
    angles: A scalar to rotate all images, or a vector to rotate a batch of
      images. This must be a scalar.
    image_width: The width of the image(s) to be transformed.
    image_height: The height of the image(s) to be transformed.

  Returns:
    A tensor of shape (num_images, 8).

  Raises:
    `TypeError` if `angles` is not rank 0 or 1.

  """
  angles = tf.convert_to_tensor(angles, dtype=tf.float32)
  if len(angles.get_shape()) == 0:  # pylint:disable=g-explicit-length-test
    angles = angles[None]
  elif len(angles.get_shape()) != 1:
    raise TypeError('Angles should have a rank 0 or 1.')
  x_offset = ((image_width - 1) -
              (tf.math.cos(angles) * (image_width - 1) - tf.math.sin(angles) *
               (image_height - 1))) / 2.0
  y_offset = ((image_height - 1) -
              (tf.math.sin(angles) * (image_width - 1) + tf.math.cos(angles) *
               (image_height - 1))) / 2.0
  num_angles = tf.shape(angles)[0]
  return tf.concat(
      values=[
          tf.math.cos(angles)[:, None],
          -tf.math.sin(angles)[:, None],
          x_offset[:, None],
          tf.math.sin(angles)[:, None],
          tf.math.cos(angles)[:, None],
          y_offset[:, None],
          tf.zeros((num_angles, 2), tf.dtypes.float32),
      ],
      axis=1,
  )


def transform(image: tf.Tensor, transforms) -> tf.Tensor:
  """Prepares input data for `image_ops.transform`."""
  original_ndims = tf.rank(image)
  transforms = tf.convert_to_tensor(transforms, dtype=tf.float32)
  if transforms.shape.rank == 1:
    transforms = transforms[None]
  image = to_4d(image)
  image = image_ops.transform(
      images=image, transforms=transforms, interpolation='nearest')
  return from_4d(image, original_ndims)


def translate(image: tf.Tensor, translations) -> tf.Tensor:
  """Translates image(s) by provided vectors.

  Args:
    image: An image Tensor of type uint8.
    translations: A vector or matrix representing [dx dy].

  Returns:
    The translated version of the image.

  """
  transforms = _convert_translation_to_transform(translations)
  return transform(image, transforms=transforms)


def rotate(image: tf.Tensor, degrees: float) -> tf.Tensor:
  """Rotates the image by degrees either clockwise or counterclockwise.

  Args:
    image: An image Tensor of type uint8.
    degrees: Float, a scalar angle in degrees to rotate all images by. If
      degrees is positive the image will be rotated clockwise otherwise it will
      be rotated counterclockwise.

  Returns:
    The rotated version of image.

  """
  # Convert from degrees to radians.
  degrees_to_radians = math.pi / 180.0
  radians = tf.cast(degrees * degrees_to_radians, tf.float32)

  original_ndims = tf.rank(image)
  image = to_4d(image)

  image_height = tf.cast(tf.shape(image)[1], tf.float32)
  image_width = tf.cast(tf.shape(image)[2], tf.float32)
  transforms = _convert_angles_to_transform(
      angles=radians, image_width=image_width, image_height=image_height)
  # In practice, we should randomize the rotation degrees by flipping
  # it negatively half the time, but that's done on 'degrees' outside
  # of the function.
  image = transform(image, transforms=transforms)
  return from_4d(image, original_ndims)


def blend(image1: tf.Tensor, image2: tf.Tensor, factor: float) -> tf.Tensor:
  """Blend image1 and image2 using 'factor'.

  Factor can be above 0.0.  A value of 0.0 means only image1 is used.
  A value of 1.0 means only image2 is used.  A value between 0.0 and
  1.0 means we linearly interpolate the pixel values between the two
  images.  A value greater than 1.0 "extrapolates" the difference
  between the two pixel values, and we clip the results to values
  between 0 and 255.

  Args:
    image1: An image Tensor of type uint8.
    image2: An image Tensor of type uint8.
    factor: A floating point value above 0.0.

  Returns:
    A blended image Tensor of type uint8.
  """
  if factor == 0.0:
    return tf.convert_to_tensor(image1)
  if factor == 1.0:
    return tf.convert_to_tensor(image2)

  image1 = tf.cast(image1, tf.float32)
  image2 = tf.cast(image2, tf.float32)

  difference = image2 - image1
  scaled = factor * difference

  # Do addition in float.
  temp = tf.cast(image1, tf.float32) + scaled

  # Interpolate
  if factor > 0.0 and factor < 1.0:
    # Interpolation means we always stay within 0 and 255.
    return tf.cast(temp, tf.uint8)

  # Extrapolate:
  #
  # We need to clip and then cast.
  return tf.cast(tf.clip_by_value(temp, 0.0, 255.0), tf.uint8)


def cutout(image: tf.Tensor, pad_size: int, replace: int = 0) -> tf.Tensor:
  """Apply cutout (https://arxiv.org/abs/1708.04552) to image.

  This operation applies a (2*pad_size x 2*pad_size) mask of zeros to
Dan Kondratyuk's avatar
Dan Kondratyuk committed
275
276
  a random location within `image`. The pixel values filled in will be of the
  value `replace`. The location where the mask will be applied is randomly
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
277
278
279
280
281
282
283
284
285
286
287
288
  chosen uniformly over the whole image.

  Args:
    image: An image Tensor of type uint8.
    pad_size: Specifies how big the zero mask that will be generated is that is
      applied to the image. The mask will be of size (2*pad_size x 2*pad_size).
    replace: What pixel value to fill in the image in the area that has the
      cutout mask applied to it.

  Returns:
    An image Tensor that is of type uint8.
  """
Dan Kondratyuk's avatar
Dan Kondratyuk committed
289
290
291
292
293
294
  if image.shape.rank not in [3, 4]:
    raise ValueError('Bad image rank: {}'.format(image.shape.rank))

  if image.shape.rank == 4:
    return cutout_video(image, replace=replace)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
295
296
297
298
299
300
301
302
303
304
  image_height = tf.shape(image)[0]
  image_width = tf.shape(image)[1]

  # Sample the center location in the image where the zero mask will be applied.
  cutout_center_height = tf.random.uniform(
      shape=[], minval=0, maxval=image_height, dtype=tf.int32)

  cutout_center_width = tf.random.uniform(
      shape=[], minval=0, maxval=image_width, dtype=tf.int32)

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
  image = _fill_rectangle(image, cutout_center_width, cutout_center_height,
                          pad_size, pad_size, replace)

  return image


def _fill_rectangle(image, center_width, center_height, half_width,
                    half_height, replace=None):
  image_height = tf.shape(image)[0]
  image_width = tf.shape(image)[1]

  lower_pad = tf.maximum(0, center_height - half_height)
  upper_pad = tf.maximum(0, image_height - center_height - half_height)
  left_pad = tf.maximum(0, center_width - half_width)
  right_pad = tf.maximum(0, image_width - center_width - half_width)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
320
321
322
323
324
325
326
327
328
329
330
331

  cutout_shape = [
      image_height - (lower_pad + upper_pad),
      image_width - (left_pad + right_pad)
  ]
  padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
  mask = tf.pad(
      tf.zeros(cutout_shape, dtype=image.dtype),
      padding_dims,
      constant_values=1)
  mask = tf.expand_dims(mask, -1)
  mask = tf.tile(mask, [1, 1, 3])
332
333
334
335
336
337
338
339
340

  if replace is None:
    fill = tf.random.normal(tf.shape(image), dtype=image.dtype)
  elif isinstance(replace, tf.Tensor):
    fill = replace
  else:
    fill = tf.ones_like(image, dtype=image.dtype) * replace
  image = tf.where(tf.equal(mask, 0), fill, image)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
341
342
343
  return image


Dan Kondratyuk's avatar
Dan Kondratyuk committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
def cutout_video(image: tf.Tensor, replace: int = 0) -> tf.Tensor:
  """Apply cutout (https://arxiv.org/abs/1708.04552) to a video.

  This operation applies a random size 3D mask of zeros to a random location
  within `image`. The mask is padded The pixel values filled in will be of the
  value `replace`. The location where the mask will be applied is randomly
  chosen uniformly over the whole image. The size of the mask is randomly
  sampled uniformly from [0.25*height, 0.5*height], [0.25*width, 0.5*width],
  and [1, 0.25*depth], which represent the height, width, and number of frames
  of the input video tensor respectively.

  Args:
    image: A video Tensor of type uint8.
    replace: What pixel value to fill in the image in the area that has the
      cutout mask applied to it.

  Returns:
    An video Tensor that is of type uint8.
  """
  image_depth = tf.shape(image)[0]
  image_height = tf.shape(image)[1]
  image_width = tf.shape(image)[2]

  # Sample the center location in the image where the zero mask will be applied.
  cutout_center_height = tf.random.uniform(
      shape=[], minval=0, maxval=image_height, dtype=tf.int32)

  cutout_center_width = tf.random.uniform(
      shape=[], minval=0, maxval=image_width, dtype=tf.int32)

  cutout_center_depth = tf.random.uniform(
      shape=[], minval=0, maxval=image_depth, dtype=tf.int32)

  pad_size_height = tf.random.uniform(
      shape=[],
      minval=tf.maximum(1, tf.cast(image_height / 4, tf.int32)),
      maxval=tf.maximum(2, tf.cast(image_height / 2, tf.int32)),
      dtype=tf.int32)
  pad_size_width = tf.random.uniform(
      shape=[],
      minval=tf.maximum(1, tf.cast(image_width / 4, tf.int32)),
      maxval=tf.maximum(2, tf.cast(image_width / 2, tf.int32)),
      dtype=tf.int32)
  pad_size_depth = tf.random.uniform(
      shape=[],
      minval=1,
      maxval=tf.maximum(2, tf.cast(image_depth / 4, tf.int32)),
      dtype=tf.int32)

  lower_pad = tf.maximum(0, cutout_center_height - pad_size_height)
  upper_pad = tf.maximum(
      0, image_height - cutout_center_height - pad_size_height)
  left_pad = tf.maximum(0, cutout_center_width - pad_size_width)
  right_pad = tf.maximum(0, image_width - cutout_center_width - pad_size_width)
  back_pad = tf.maximum(0, cutout_center_depth - pad_size_depth)
  forward_pad = tf.maximum(
      0, image_depth - cutout_center_depth - pad_size_depth)

  cutout_shape = [
      image_depth - (back_pad + forward_pad),
      image_height - (lower_pad + upper_pad),
      image_width - (left_pad + right_pad),
  ]
  padding_dims = [[back_pad, forward_pad],
                  [lower_pad, upper_pad],
                  [left_pad, right_pad]]
  mask = tf.pad(
      tf.zeros(cutout_shape, dtype=image.dtype),
      padding_dims,
      constant_values=1)
  mask = tf.expand_dims(mask, -1)
  mask = tf.tile(mask, [1, 1, 1, 3])
  image = tf.where(
      tf.equal(mask, 0),
      tf.ones_like(image, dtype=image.dtype) * replace, image)
  return image


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
422
def solarize(image: tf.Tensor, threshold: int = 128) -> tf.Tensor:
Dan Kondratyuk's avatar
Dan Kondratyuk committed
423
  """Solarize the input image(s)."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
424
425
426
427
428
429
430
431
432
  # For each pixel in the image, select the pixel
  # if the value is less than the threshold.
  # Otherwise, subtract 255 from the pixel.
  return tf.where(image < threshold, image, 255 - image)


def solarize_add(image: tf.Tensor,
                 addition: int = 0,
                 threshold: int = 128) -> tf.Tensor:
Dan Kondratyuk's avatar
Dan Kondratyuk committed
433
  """Additive solarize the input image(s)."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
  # For each pixel in the image less than threshold
  # we add 'addition' amount to it and then clip the
  # pixel value to be between 0 and 255. The value
  # of 'addition' is between -128 and 128.
  added_image = tf.cast(image, tf.int64) + addition
  added_image = tf.cast(tf.clip_by_value(added_image, 0, 255), tf.uint8)
  return tf.where(image < threshold, added_image, image)


def color(image: tf.Tensor, factor: float) -> tf.Tensor:
  """Equivalent of PIL Color."""
  degenerate = tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image))
  return blend(degenerate, image, factor)


def contrast(image: tf.Tensor, factor: float) -> tf.Tensor:
  """Equivalent of PIL Contrast."""
  degenerate = tf.image.rgb_to_grayscale(image)
  # Cast before calling tf.histogram.
  degenerate = tf.cast(degenerate, tf.int32)

  # Compute the grayscale histogram, then compute the mean pixel value,
  # and create a constant image size of that value.  Use that as the
  # blending degenerate target of the original image.
  hist = tf.histogram_fixed_width(degenerate, [0, 255], nbins=256)
  mean = tf.reduce_sum(tf.cast(hist, tf.float32)) / 256.0
  degenerate = tf.ones_like(degenerate, dtype=tf.float32) * mean
  degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
  degenerate = tf.image.grayscale_to_rgb(tf.cast(degenerate, tf.uint8))
  return blend(degenerate, image, factor)


def brightness(image: tf.Tensor, factor: float) -> tf.Tensor:
  """Equivalent of PIL Brightness."""
  degenerate = tf.zeros_like(image)
  return blend(degenerate, image, factor)


def posterize(image: tf.Tensor, bits: int) -> tf.Tensor:
  """Equivalent of PIL Posterize."""
  shift = 8 - bits
  return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift)


def wrapped_rotate(image: tf.Tensor, degrees: float, replace: int) -> tf.Tensor:
  """Applies rotation with wrap/unwrap."""
  image = rotate(wrap(image), degrees=degrees)
  return unwrap(image, replace)


def translate_x(image: tf.Tensor, pixels: int, replace: int) -> tf.Tensor:
  """Equivalent of PIL Translate in X dimension."""
  image = translate(wrap(image), [-pixels, 0])
  return unwrap(image, replace)


def translate_y(image: tf.Tensor, pixels: int, replace: int) -> tf.Tensor:
  """Equivalent of PIL Translate in Y dimension."""
  image = translate(wrap(image), [0, -pixels])
  return unwrap(image, replace)


def shear_x(image: tf.Tensor, level: float, replace: int) -> tf.Tensor:
  """Equivalent of PIL Shearing in X dimension."""
  # Shear parallel to x axis is a projective transform
  # with a matrix form of:
  # [1  level
  #  0  1].
  image = transform(
      image=wrap(image), transforms=[1., level, 0., 0., 1., 0., 0., 0.])
  return unwrap(image, replace)


def shear_y(image: tf.Tensor, level: float, replace: int) -> tf.Tensor:
  """Equivalent of PIL Shearing in Y dimension."""
  # Shear parallel to y axis is a projective transform
  # with a matrix form of:
  # [1  0
  #  level  1].
  image = transform(
      image=wrap(image), transforms=[1., 0., 0., level, 1., 0., 0., 0.])
  return unwrap(image, replace)


def autocontrast(image: tf.Tensor) -> tf.Tensor:
  """Implements Autocontrast function from PIL using TF ops.

  Args:
    image: A 3D uint8 tensor.

  Returns:
    The image after it has had autocontrast applied to it and will be of type
    uint8.
  """

  def scale_channel(image: tf.Tensor) -> tf.Tensor:
    """Scale the 2D image using the autocontrast rule."""
    # A possibly cheaper version can be done using cumsum/unique_with_counts
    # over the histogram values, rather than iterating over the entire image.
    # to compute mins and maxes.
    lo = tf.cast(tf.reduce_min(image), tf.float32)
    hi = tf.cast(tf.reduce_max(image), tf.float32)

    # Scale the image, making the lowest value 0 and the highest value 255.
    def scale_values(im):
      scale = 255.0 / (hi - lo)
      offset = -lo * scale
      im = tf.cast(im, tf.float32) * scale + offset
      im = tf.clip_by_value(im, 0.0, 255.0)
      return tf.cast(im, tf.uint8)

    result = tf.cond(hi > lo, lambda: scale_values(image), lambda: image)
    return result

  # Assumes RGB for now.  Scales each channel independently
  # and then stacks the result.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
550
551
552
553
554
  s1 = scale_channel(image[..., 0])
  s2 = scale_channel(image[..., 1])
  s3 = scale_channel(image[..., 2])
  image = tf.stack([s1, s2, s3], -1)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
555
556
557
558
559
560
561
562
563
564
  return image


def sharpness(image: tf.Tensor, factor: float) -> tf.Tensor:
  """Implements Sharpness function from PIL using TF ops."""
  orig_image = image
  image = tf.cast(image, tf.float32)
  # Make image 4D for conv operation.
  image = tf.expand_dims(image, 0)
  # SMOOTH PIL Kernel.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
  if orig_image.shape.rank == 3:
    kernel = tf.constant([[1, 1, 1], [1, 5, 1], [1, 1, 1]],
                         dtype=tf.float32,
                         shape=[3, 3, 1, 1]) / 13.
    # Tile across channel dimension.
    kernel = tf.tile(kernel, [1, 1, 3, 1])
    strides = [1, 1, 1, 1]
    degenerate = tf.nn.depthwise_conv2d(
        image, kernel, strides, padding='VALID', dilations=[1, 1])
  elif orig_image.shape.rank == 4:
    kernel = tf.constant([[1, 1, 1], [1, 5, 1], [1, 1, 1]],
                         dtype=tf.float32,
                         shape=[1, 3, 3, 1, 1]) / 13.
    strides = [1, 1, 1, 1, 1]
    # Run the kernel across each channel
    channels = tf.split(image, 3, axis=-1)
    degenerates = [
        tf.nn.conv3d(channel, kernel, strides, padding='VALID',
                     dilations=[1, 1, 1, 1, 1])
        for channel in channels
    ]
    degenerate = tf.concat(degenerates, -1)
  else:
    raise ValueError('Bad image rank: {}'.format(image.shape.rank))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
589
590
591
592
593
594
  degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
  degenerate = tf.squeeze(tf.cast(degenerate, tf.uint8), [0])

  # For the borders of the resulting image, fill in the values of the
  # original image.
  mask = tf.ones_like(degenerate)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
595
596
597
  paddings = [[0, 0]] * (orig_image.shape.rank - 3)
  padded_mask = tf.pad(mask, paddings + [[1, 1], [1, 1], [0, 0]])
  padded_degenerate = tf.pad(degenerate, paddings + [[1, 1], [1, 1], [0, 0]])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
598
599
600
601
602
603
604
605
606
607
608
  result = tf.where(tf.equal(padded_mask, 1), padded_degenerate, orig_image)

  # Blend the final result.
  return blend(result, orig_image, factor)


def equalize(image: tf.Tensor) -> tf.Tensor:
  """Implements Equalize function from PIL using TF ops."""

  def scale_channel(im, c):
    """Scale the data in the channel to implement equalize."""
Dan Kondratyuk's avatar
Dan Kondratyuk committed
609
    im = tf.cast(im[..., c], tf.int32)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
    # Compute the histogram of the image channel.
    histo = tf.histogram_fixed_width(im, [0, 255], nbins=256)

    # For the purposes of computing the step, filter out the nonzeros.
    nonzero = tf.where(tf.not_equal(histo, 0))
    nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1])
    step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255

    def build_lut(histo, step):
      # Compute the cumulative sum, shifting by step // 2
      # and then normalization by step.
      lut = (tf.cumsum(histo) + (step // 2)) // step
      # Shift lut, prepending with 0.
      lut = tf.concat([[0], lut[:-1]], 0)
      # Clip the counts to be in range.  This is done
      # in the C code for image.point.
      return tf.clip_by_value(lut, 0, 255)

    # If step is zero, return the original image.  Otherwise, build
    # lut from the full histogram and step and then index from it.
    result = tf.cond(
        tf.equal(step, 0), lambda: im,
        lambda: tf.gather(build_lut(histo, step), im))

    return tf.cast(result, tf.uint8)

  # Assumes RGB for now.  Scales each channel independently
  # and then stacks the result.
  s1 = scale_channel(image, 0)
  s2 = scale_channel(image, 1)
  s3 = scale_channel(image, 2)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
641
  image = tf.stack([s1, s2, s3], -1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
642
643
644
645
646
647
648
649
650
651
652
653
  return image


def invert(image: tf.Tensor) -> tf.Tensor:
  """Inverts the image pixels."""
  image = tf.convert_to_tensor(image)
  return 255 - image


def wrap(image: tf.Tensor) -> tf.Tensor:
  """Returns 'image' with an extra channel set to all 1s."""
  shape = tf.shape(image)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
654
655
  extended_channel = tf.expand_dims(tf.ones(shape[:-1], image.dtype), -1)
  extended = tf.concat([image, extended_channel], axis=-1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
  return extended


def unwrap(image: tf.Tensor, replace: int) -> tf.Tensor:
  """Unwraps an image produced by wrap.

  Where there is a 0 in the last channel for every spatial position,
  the rest of the three channels in that spatial dimension are grayed
  (set to 128).  Operations like translate and shear on a wrapped
  Tensor will leave 0s in empty locations.  Some transformations look
  at the intensity of values to do preprocessing, and we want these
  empty pixels to assume the 'average' value, rather than pure black.


  Args:
    image: A 3D Image Tensor with 4 channels.
    replace: A one or three value 1D tensor to fill empty pixels.

  Returns:
    image: A 3D image Tensor with 3 channels.
  """
  image_shape = tf.shape(image)
  # Flatten the spatial dimensions.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
679
  flattened_image = tf.reshape(image, [-1, image_shape[-1]])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
680
681

  # Find all pixels where the last channel is zero.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
682
  alpha_channel = tf.expand_dims(flattened_image[..., 3], axis=-1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
683
684
685
686
687
688
689
690
691
692

  replace = tf.concat([replace, tf.ones([1], image.dtype)], 0)

  # Where they are zero, fill them in with 'replace'.
  flattened_image = tf.where(
      tf.equal(alpha_channel, 0),
      tf.ones_like(flattened_image, dtype=image.dtype) * replace,
      flattened_image)

  image = tf.reshape(flattened_image, image_shape)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
693
694
695
696
  image = tf.slice(
      image,
      [0] * image.shape.rank,
      tf.concat([image_shape[:-1], [3]], -1))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
  return image


def _randomly_negate_tensor(tensor):
  """With 50% prob turn the tensor negative."""
  should_flip = tf.cast(tf.floor(tf.random.uniform([]) + 0.5), tf.bool)
  final_tensor = tf.cond(should_flip, lambda: tensor, lambda: -tensor)
  return final_tensor


def _rotate_level_to_arg(level: float):
  level = (level / _MAX_LEVEL) * 30.
  level = _randomly_negate_tensor(level)
  return (level,)


def _shrink_level_to_arg(level: float):
  """Converts level to ratio by which we shrink the image content."""
  if level == 0:
    return (1.0,)  # if level is zero, do not shrink the image
  # Maximum shrinking ratio is 2.9.
  level = 2. / (_MAX_LEVEL / level) + 0.9
  return (level,)


def _enhance_level_to_arg(level: float):
  return ((level / _MAX_LEVEL) * 1.8 + 0.1,)


def _shear_level_to_arg(level: float):
  level = (level / _MAX_LEVEL) * 0.3
  # Flip level to negative with 50% chance.
  level = _randomly_negate_tensor(level)
  return (level,)


def _translate_level_to_arg(level: float, translate_const: float):
  level = (level / _MAX_LEVEL) * float(translate_const)
  # Flip level to negative with 50% chance.
  level = _randomly_negate_tensor(level)
  return (level,)


def _mult_to_arg(level: float, multiplier: float = 1.):
  return (int((level / _MAX_LEVEL) * multiplier),)


def _apply_func_with_prob(func: Any, image: tf.Tensor, args: Any, prob: float):
  """Apply `func` to image w/ `args` as input with probability `prob`."""
  assert isinstance(args, tuple)

  # Apply the function with probability `prob`.
  should_apply_op = tf.cast(
      tf.floor(tf.random.uniform([], dtype=tf.float32) + prob), tf.bool)
  augmented_image = tf.cond(should_apply_op, lambda: func(image, *args),
                            lambda: image)
  return augmented_image


def select_and_apply_random_policy(policies: Any, image: tf.Tensor):
  """Select a random policy from `policies` and apply it to `image`."""
  policy_to_select = tf.random.uniform([], maxval=len(policies), dtype=tf.int32)
  # Note that using tf.case instead of tf.conds would result in significantly
  # larger graphs and would even break export for some larger policies.
  for (i, policy) in enumerate(policies):
    image = tf.cond(
        tf.equal(i, policy_to_select),
        lambda selected_policy=policy: selected_policy(image),
        lambda: image)
  return image


NAME_TO_FUNC = {
    'AutoContrast': autocontrast,
    'Equalize': equalize,
    'Invert': invert,
    'Rotate': wrapped_rotate,
    'Posterize': posterize,
    'Solarize': solarize,
    'SolarizeAdd': solarize_add,
    'Color': color,
    'Contrast': contrast,
    'Brightness': brightness,
    'Sharpness': sharpness,
    'ShearX': shear_x,
    'ShearY': shear_y,
    'TranslateX': translate_x,
    'TranslateY': translate_y,
    'Cutout': cutout,
}

# Functions that have a 'replace' parameter
REPLACE_FUNCS = frozenset({
    'Rotate',
    'TranslateX',
    'ShearX',
    'ShearY',
    'TranslateY',
    'Cutout',
})


def level_to_arg(cutout_const: float, translate_const: float):
  """Creates a dict mapping image operation names to their arguments."""

  no_arg = lambda level: ()
  posterize_arg = lambda level: _mult_to_arg(level, 4)
  solarize_arg = lambda level: _mult_to_arg(level, 256)
  solarize_add_arg = lambda level: _mult_to_arg(level, 110)
  cutout_arg = lambda level: _mult_to_arg(level, cutout_const)
  translate_arg = lambda level: _translate_level_to_arg(level, translate_const)

  args = {
      'AutoContrast': no_arg,
      'Equalize': no_arg,
      'Invert': no_arg,
      'Rotate': _rotate_level_to_arg,
      'Posterize': posterize_arg,
      'Solarize': solarize_arg,
      'SolarizeAdd': solarize_add_arg,
      'Color': _enhance_level_to_arg,
      'Contrast': _enhance_level_to_arg,
      'Brightness': _enhance_level_to_arg,
      'Sharpness': _enhance_level_to_arg,
      'ShearX': _shear_level_to_arg,
      'ShearY': _shear_level_to_arg,
      'Cutout': cutout_arg,
      'TranslateX': translate_arg,
      'TranslateY': translate_arg,
  }
  return args


def _parse_policy_info(name: Text, prob: float, level: float,
                       replace_value: List[int], cutout_const: float,
832
833
                       translate_const: float, level_std: float = 0.
                       ) -> Tuple[Any, float, Any]:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
834
835
  """Return the function that corresponds to `name` and update `level` param."""
  func = NAME_TO_FUNC[name]
836
837
838
839
840

  if level_std > 0:
    level += tf.random.normal([], dtype=tf.float32)
    level = tf.clip_by_value(level, 0., _MAX_LEVEL)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
  args = level_to_arg(cutout_const, translate_const)[name](level)

  if name in REPLACE_FUNCS:
    # Add in replace arg if it is required for the function that is called.
    args = tuple(list(args) + [replace_value])

  return func, prob, args


class ImageAugment(object):
  """Image augmentation class for applying image distortions."""

  def distort(self, image: tf.Tensor) -> tf.Tensor:
    """Given an image tensor, returns a distorted image with the same shape.

    Args:
Dan Kondratyuk's avatar
Dan Kondratyuk committed
857
858
      image: `Tensor` of shape [height, width, 3] or
      [num_frames, height, width, 3] representing an image or image sequence.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873

    Returns:
      The augmented version of `image`.
    """
    raise NotImplementedError()


class AutoAugment(ImageAugment):
  """Applies the AutoAugment policy to images.

    AutoAugment is from the paper: https://arxiv.org/abs/1805.09501.
  """

  def __init__(self,
               augmentation_name: Text = 'v0',
874
875
               policies: Optional[Iterable[Iterable[Tuple[Text, float,
                                                          float]]]] = None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
876
877
878
879
880
881
               cutout_const: float = 100,
               translate_const: float = 250):
    """Applies the AutoAugment policy to images.

    Args:
      augmentation_name: The name of the AutoAugment policy to use. The
882
883
        available options are `v0`, `test`, `reduced_cifar10`, `svhn` and
        `reduced_imagenet`. `v0` is the policy used for all
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
884
885
886
887
        of the results in the paper and was found to achieve the best results on
        the COCO dataset. `v1`, `v2` and `v3` are additional good policies found
        on the COCO dataset that have slight variation in what operations were
        used during the search procedure along with how many operations are
888
889
890
        applied in parallel to a single image (2 vs 3). Make sure to set
        `policies` to `None` (the default) if you want to set options using
        `augmentation_name`.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
891
892
      policies: list of lists of tuples in the form `(func, prob, level)`,
        `func` is a string name of the augmentation function, `prob` is the
893
894
895
896
897
898
899
900
901
902
        probability of applying the `func` operation, `level` (or magnitude) is
        the input argument for `func`. For example:
        ```
        [[('Equalize', 0.9, 3), ('Color', 0.7, 8)],
         [('Invert', 0.6, 5), ('Rotate', 0.2, 9), ('ShearX', 0.1, 2)], ...]
        ```
        The outer-most list must be 3-d. The number of operations in a
        sub-policy can vary from one sub-policy to another.
        If you provide `policies` as input, any option set with
        `augmentation_name` will get overriden as they are mutually exclusive.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
903
904
      cutout_const: multiplier for applying cutout.
      translate_const: multiplier for applying translation.
905
906
907

    Raises:
      ValueError if `augmentation_name` is unsupported.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
908
909
910
911
912
913
    """
    super(AutoAugment, self).__init__()

    self.augmentation_name = augmentation_name
    self.cutout_const = float(cutout_const)
    self.translate_const = float(translate_const)
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
    self.available_policies = {
        'v0': self.policy_v0(),
        'test': self.policy_test(),
        'simple': self.policy_simple(),
        'reduced_cifar10': self.policy_reduced_cifar10(),
        'svhn': self.policy_svhn(),
        'reduced_imagenet': self.policy_reduced_imagenet(),
    }

    if not policies:
      if augmentation_name not in self.available_policies:
        raise ValueError(
            'Invalid augmentation_name: {}'.format(augmentation_name))

      self.policies = self.available_policies[augmentation_name]

    else:
      self._check_policy_shape(policies)
      self.policies = policies

  def _check_policy_shape(self, policies):
    """Checks dimension and shape of the custom policy.

    Args:
      policies: List of list of tuples in the form `(func, prob, level)`. Must
        have shape of `(:, :, 3)`.

    Raises:
      ValueError if the shape of `policies` is unexpected.
    """
    in_shape = np.array(policies).shape
    if len(in_shape) != 3 or in_shape[-1:] != (3,):
      raise ValueError('Wrong shape detected for custom policy. Expected '
                       '(:, :, 3) but got {}.'.format(in_shape))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977

  def distort(self, image: tf.Tensor) -> tf.Tensor:
    """Applies the AutoAugment policy to `image`.

    AutoAugment is from the paper: https://arxiv.org/abs/1805.09501.

    Args:
      image: `Tensor` of shape [height, width, 3] representing an image.

    Returns:
      A version of image that now has data augmentation applied to it based on
      the `policies` pass into the function.
    """
    input_image_type = image.dtype

    if input_image_type != tf.uint8:
      image = tf.clip_by_value(image, 0.0, 255.0)
      image = tf.cast(image, dtype=tf.uint8)

    replace_value = [128] * 3

    # func is the string name of the augmentation function, prob is the
    # probability of applying the operation and level is the parameter
    # associated with the tf op.

    # tf_policies are functions that take in an image and return an augmented
    # image.
    tf_policies = []
    for policy in self.policies:
      tf_policy = []
978
      assert_ranges = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
979
980
981
      # Link string name to the correct python function and make sure the
      # correct argument is passed into that function.
      for policy_info in policy:
982
983
984
985
986
        _, prob, level = policy_info
        assert_ranges.append(tf.Assert(tf.less_equal(prob, 1.), [prob]))
        assert_ranges.append(
            tf.Assert(tf.less_equal(level, int(_MAX_LEVEL)), [level]))

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
        policy_info = list(policy_info) + [
            replace_value, self.cutout_const, self.translate_const
        ]
        tf_policy.append(_parse_policy_info(*policy_info))
      # Now build the tf policy that will apply the augmentation procedue
      # on image.
      def make_final_policy(tf_policy_):

        def final_policy(image_):
          for func, prob, args in tf_policy_:
            image_ = _apply_func_with_prob(func, image_, args, prob)
          return image_

        return final_policy

1002
1003
      with tf.control_dependencies(assert_ranges):
        tf_policies.append(make_final_policy(tf_policy))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

    image = select_and_apply_random_policy(tf_policies, image)
    image = tf.cast(image, dtype=input_image_type)
    return image

  @staticmethod
  def policy_v0():
    """Autoaugment policy that was used in AutoAugment Paper.

    Each tuple is an augmentation operation of the form
    (operation, probability, magnitude). Each element in policy is a
    sub-policy that will be applied sequentially on the image.

    Returns:
      the policy.
    """

    policy = [
        [('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
        [('Color', 0.4, 9), ('Equalize', 0.6, 3)],
        [('Color', 0.4, 1), ('Rotate', 0.6, 8)],
        [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
        [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
        [('Color', 0.2, 0), ('Equalize', 0.8, 8)],
        [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
        [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
        [('Color', 0.6, 1), ('Equalize', 1.0, 2)],
        [('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
        [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
        [('Color', 0.4, 7), ('Equalize', 0.6, 0)],
        [('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)],
        [('Solarize', 0.6, 8), ('Color', 0.6, 9)],
        [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
        [('Rotate', 1.0, 7), ('TranslateY', 0.8, 9)],
        [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
        [('ShearY', 0.8, 0), ('Color', 0.6, 4)],
        [('Color', 1.0, 0), ('Rotate', 0.6, 2)],
        [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
        [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
        [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
        [('Posterize', 0.8, 2), ('Solarize', 0.6, 10)],
        [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
        [('Color', 0.8, 6), ('Rotate', 0.4, 5)],
    ]
    return policy

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
  @staticmethod
  def policy_reduced_cifar10():
    """Autoaugment policy for reduced CIFAR-10 dataset.

    Result is from the AutoAugment paper: https://arxiv.org/abs/1805.09501.

    Each tuple is an augmentation operation of the form
    (operation, probability, magnitude). Each element in policy is a
    sub-policy that will be applied sequentially on the image.

    Returns:
      the policy.
    """
    policy = [
        [('Invert', 0.1, 7), ('Contrast', 0.2, 6)],
        [('Rotate', 0.7, 2), ('TranslateX', 0.3, 9)],
        [('Sharpness', 0.8, 1), ('Sharpness', 0.9, 3)],
        [('ShearY', 0.5, 8), ('TranslateY', 0.7, 9)],
        [('AutoContrast', 0.5, 8), ('Equalize', 0.9, 2)],
        [('ShearY', 0.2, 7), ('Posterize', 0.3, 7)],
        [('Color', 0.4, 3), ('Brightness', 0.6, 7)],
        [('Sharpness', 0.3, 9), ('Brightness', 0.7, 9)],
        [('Equalize', 0.6, 5), ('Equalize', 0.5, 1)],
        [('Contrast', 0.6, 7), ('Sharpness', 0.6, 5)],
        [('Color', 0.7, 7), ('TranslateX', 0.5, 8)],
        [('Equalize', 0.3, 7), ('AutoContrast', 0.4, 8)],
        [('TranslateY', 0.4, 3), ('Sharpness', 0.2, 6)],
        [('Brightness', 0.9, 6), ('Color', 0.2, 8)],
        [('Solarize', 0.5, 2), ('Invert', 0.0, 3)],
        [('Equalize', 0.2, 0), ('AutoContrast', 0.6, 0)],
        [('Equalize', 0.2, 8), ('Equalize', 0.6, 4)],
        [('Color', 0.9, 9), ('Equalize', 0.6, 6)],
        [('AutoContrast', 0.8, 4), ('Solarize', 0.2, 8)],
        [('Brightness', 0.1, 3), ('Color', 0.7, 0)],
        [('Solarize', 0.4, 5), ('AutoContrast', 0.9, 3)],
        [('TranslateY', 0.9, 9), ('TranslateY', 0.7, 9)],
        [('AutoContrast', 0.9, 2), ('Solarize', 0.8, 3)],
        [('Equalize', 0.8, 8), ('Invert', 0.1, 3)],
        [('TranslateY', 0.7, 9), ('AutoContrast', 0.9, 1)],
    ]
    return policy

  @staticmethod
  def policy_svhn():
    """Autoaugment policy for SVHN dataset.

    Result is from the AutoAugment paper: https://arxiv.org/abs/1805.09501.

    Each tuple is an augmentation operation of the form
    (operation, probability, magnitude). Each element in policy is a
    sub-policy that will be applied sequentially on the image.

    Returns:
      the policy.
    """
    policy = [
        [('ShearX', 0.9, 4), ('Invert', 0.2, 3)],
        [('ShearY', 0.9, 8), ('Invert', 0.7, 5)],
        [('Equalize', 0.6, 5), ('Solarize', 0.6, 6)],
        [('Invert', 0.9, 3), ('Equalize', 0.6, 3)],
        [('Equalize', 0.6, 1), ('Rotate', 0.9, 3)],
        [('ShearX', 0.9, 4), ('AutoContrast', 0.8, 3)],
        [('ShearY', 0.9, 8), ('Invert', 0.4, 5)],
        [('ShearY', 0.9, 5), ('Solarize', 0.2, 6)],
        [('Invert', 0.9, 6), ('AutoContrast', 0.8, 1)],
        [('Equalize', 0.6, 3), ('Rotate', 0.9, 3)],
        [('ShearX', 0.9, 4), ('Solarize', 0.3, 3)],
        [('ShearY', 0.8, 8), ('Invert', 0.7, 4)],
        [('Equalize', 0.9, 5), ('TranslateY', 0.6, 6)],
        [('Invert', 0.9, 4), ('Equalize', 0.6, 7)],
        [('Contrast', 0.3, 3), ('Rotate', 0.8, 4)],
        [('Invert', 0.8, 5), ('TranslateY', 0.0, 2)],
        [('ShearY', 0.7, 6), ('Solarize', 0.4, 8)],
        [('Invert', 0.6, 4), ('Rotate', 0.8, 4)],
        [('ShearY', 0.3, 7), ('TranslateX', 0.9, 3)],
        [('ShearX', 0.1, 6), ('Invert', 0.6, 5)],
        [('Solarize', 0.7, 2), ('TranslateY', 0.6, 7)],
        [('ShearY', 0.8, 4), ('Invert', 0.8, 8)],
        [('ShearX', 0.7, 9), ('TranslateY', 0.8, 3)],
        [('ShearY', 0.8, 5), ('AutoContrast', 0.7, 3)],
        [('ShearX', 0.7, 2), ('Invert', 0.1, 5)],
    ]
    return policy

  @staticmethod
  def policy_reduced_imagenet():
    """Autoaugment policy for reduced ImageNet dataset.

    Result is from the AutoAugment paper: https://arxiv.org/abs/1805.09501.

    Each tuple is an augmentation operation of the form
    (operation, probability, magnitude). Each element in policy is a
    sub-policy that will be applied sequentially on the image.

    Returns:
      the policy.
    """
    policy = [
        [('Posterize', 0.4, 8), ('Rotate', 0.6, 9)],
        [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
        [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
        [('Posterize', 0.6, 7), ('Posterize', 0.6, 6)],
        [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
        [('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
        [('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
        [('Posterize', 0.8, 5), ('Equalize', 1.0, 2)],
        [('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
        [('Equalize', 0.6, 8), ('Posterize', 0.4, 6)],
        [('Rotate', 0.8, 8), ('Color', 0.4, 0)],
        [('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
        [('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
        [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
        [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
        [('Rotate', 0.8, 8), ('Color', 1.0, 2)],
        [('Color', 0.8, 8), ('Solarize', 0.8, 7)],
        [('Sharpness', 0.4, 7), ('Invert', 0.6, 8)],
        [('ShearX', 0.6, 5), ('Equalize', 1.0, 9)],
        [('Color', 0.4, 0), ('Equalize', 0.6, 3)],
        [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
        [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
        [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
        [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
        [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)]
    ]
    return policy

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
  @staticmethod
  def policy_simple():
    """Same as `policy_v0`, except with custom ops removed."""

    policy = [
        [('Color', 0.4, 9), ('Equalize', 0.6, 3)],
        [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
        [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
        [('Color', 0.2, 0), ('Equalize', 0.8, 8)],
        [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
        [('Color', 0.6, 1), ('Equalize', 1.0, 2)],
        [('Color', 0.4, 7), ('Equalize', 0.6, 0)],
        [('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)],
        [('Solarize', 0.6, 8), ('Color', 0.6, 9)],
        [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
        [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
        [('Posterize', 0.8, 2), ('Solarize', 0.6, 10)],
        [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
    ]
    return policy

  @staticmethod
  def policy_test():
    """Autoaugment test policy for debugging."""
    policy = [
        [('TranslateX', 1.0, 4), ('Equalize', 1.0, 10)],
    ]
    return policy


class RandAugment(ImageAugment):
  """Applies the RandAugment policy to images.

  RandAugment is from the paper https://arxiv.org/abs/1909.13719,
  """

  def __init__(self,
               num_layers: int = 2,
               magnitude: float = 10.,
               cutout_const: float = 40.,
Fan Yang's avatar
Fan Yang committed
1216
               translate_const: float = 100.,
1217
1218
1219
               magnitude_std: float = 0.0,
               prob_to_apply: Optional[float] = None,
               exclude_ops: List[str] = []):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
    """Applies the RandAugment policy to images.

    Args:
      num_layers: Integer, the number of augmentation transformations to apply
        sequentially to an image. Represented as (N) in the paper. Usually best
        values will be in the range [1, 3].
      magnitude: Integer, shared magnitude across all augmentation operations.
        Represented as (M) in the paper. Usually best values are in the range
        [5, 10].
      cutout_const: multiplier for applying cutout.
      translate_const: multiplier for applying translation.
1231
1232
      magnitude_std: randomness of the severity as proposed by the authors of
        the timm library.
Fan Yang's avatar
Fan Yang committed
1233
1234
      prob_to_apply: The probability to apply the selected augmentation at each
        layer.
1235
      exclude_ops: exclude selected operations.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1236
1237
1238
1239
1240
1241
1242
    """
    super(RandAugment, self).__init__()

    self.num_layers = num_layers
    self.magnitude = float(magnitude)
    self.cutout_const = float(cutout_const)
    self.translate_const = float(translate_const)
Fan Yang's avatar
Fan Yang committed
1243
1244
    self.prob_to_apply = (
        float(prob_to_apply) if prob_to_apply is not None else None)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1245
1246
1247
1248
1249
    self.available_ops = [
        'AutoContrast', 'Equalize', 'Invert', 'Rotate', 'Posterize', 'Solarize',
        'Color', 'Contrast', 'Brightness', 'Sharpness', 'ShearX', 'ShearY',
        'TranslateX', 'TranslateY', 'Cutout', 'SolarizeAdd'
    ]
1250
1251
1252
    self.magnitude_std = magnitude_std
    self.available_ops = [
        op for op in self.available_ops if op not in exclude_ops]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

  def distort(self, image: tf.Tensor) -> tf.Tensor:
    """Applies the RandAugment policy to `image`.

    Args:
      image: `Tensor` of shape [height, width, 3] representing an image.

    Returns:
      The augmented version of `image`.
    """
    input_image_type = image.dtype

    if input_image_type != tf.uint8:
      image = tf.clip_by_value(image, 0.0, 255.0)
      image = tf.cast(image, dtype=tf.uint8)

    replace_value = [128] * 3
    min_prob, max_prob = 0.2, 0.8

Fan Yang's avatar
Fan Yang committed
1272
1273
    aug_image = image

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
    for _ in range(self.num_layers):
      op_to_select = tf.random.uniform([],
                                       maxval=len(self.available_ops) + 1,
                                       dtype=tf.int32)

      branch_fns = []
      for (i, op_name) in enumerate(self.available_ops):
        prob = tf.random.uniform([],
                                 minval=min_prob,
                                 maxval=max_prob,
                                 dtype=tf.float32)
        func, _, args = _parse_policy_info(op_name, prob, self.magnitude,
                                           replace_value, self.cutout_const,
1287
1288
                                           self.translate_const,
                                           self.magnitude_std)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1289
1290
1291
1292
1293
1294
1295
        branch_fns.append((
            i,
            # pylint:disable=g-long-lambda
            lambda selected_func=func, selected_args=args: selected_func(
                image, *selected_args)))
        # pylint:enable=g-long-lambda

Fan Yang's avatar
Fan Yang committed
1296
      aug_image = tf.switch_case(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1297
1298
1299
1300
          branch_index=op_to_select,
          branch_fns=branch_fns,
          default=lambda: tf.identity(image))

Fan Yang's avatar
Fan Yang committed
1301
1302
1303
1304
1305
1306
      if self.prob_to_apply is not None:
        aug_image = tf.cond(
            tf.random.uniform(shape=[], dtype=tf.float32) < self.prob_to_apply,
            lambda: tf.identity(aug_image), lambda: tf.identity(image))
      image = aug_image

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1307
1308
    image = tf.cast(image, dtype=input_image_type)
    return image
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361


class RandomErasing(ImageAugment):
  """Applies RandomErasing to a single image.

  Reference: https://arxiv.org/abs/1708.04896

  Implementaion is inspired by https://github.com/rwightman/pytorch-image-models
  """

  def __init__(self, probability: float = 0.25, min_area: float = 0.02,
               max_area: float = 1 / 3, min_aspect: float = 0.3,
               max_aspect=None, min_count=1, max_count=1, trials=10):
    """Applies RandomErasing to a single image.

    Args:
      probability (float, optional): Probability of augmenting the image.
        Defaults to 0.25.
      min_area (float, optional): Minimum area of the random erasing
        rectangle. Defaults to 0.02.
      max_area (float, optional): Maximum area of the random erasing
        rectangle. Defaults to 1/3.
      min_aspect (float, optional): Minimum aspect rate of the random erasing
        rectangle. Defaults to 0.3.
      max_aspect ([type], optional): Maximum aspect rate of the random
        erasing rectangle. Defaults to None.
      min_count (int, optional): Minimum number of erased
        rectangles. Defaults to 1.
      max_count (int, optional):  Maximum number of erased
        rectangles. Defaults to 1.
      trials (int, optional): Maximum number of trials to randomly sample a
        rectangle that fulfills constraint. Defaults to 10.
    """
    self._probability = probability
    self._min_area = float(min_area)
    self._max_area = float(max_area)
    self._min_log_aspect = math.log(min_aspect)
    self._max_log_aspect = math.log(max_aspect or 1 / min_aspect)
    self._min_count = min_count
    self._max_count = max_count
    self._trials = trials

  def distort(self, image: tf.Tensor) -> tf.Tensor:
    """Applies RandomErasing to single `image`.

    Args:
      image (tf.Tensor): Of shape [height, width, 3] representing an image.

    Returns:
      tf.Tensor: The augmented version of `image`.
    """
    uniform_random = tf.random.uniform(shape=[], minval=0., maxval=1.0)
    mirror_cond = tf.less(uniform_random, .5)
1362
    tf.cond(mirror_cond, lambda: self._erase(image), lambda: image)
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
    return image

  @tf.function
  def _erase(self, image: tf.Tensor) -> tf.Tensor:
    count = self._min_count if self._min_count == self._max_count else \
        tf.random.uniform(shape=[], minval=int(self._min_count),
                          maxval=int(self._max_count - self._min_count + 1),
                          dtype=tf.int32)

    image_height = tf.shape(image)[0]
    image_width = tf.shape(image)[1]
    area = tf.cast(image_width * image_height, tf.float32)

    for _ in range(count):
1377
1378
      # Work around since break is not supported in tf.function
      is_trial_successfull = False
1379
      for _ in range(self._trials):
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
        if not is_trial_successfull:
          erase_area = tf.random.uniform(shape=[],
                                        minval=area * self._min_area,
                                        maxval=area * self._max_area)
          aspect_ratio = tf.math.exp(tf.random.uniform(
              shape=[], minval=self._min_log_aspect,
              maxval=self._max_log_aspect))

          half_height = tf.cast(tf.math.round(tf.math.sqrt(
              erase_area * aspect_ratio) / 2), dtype=tf.int32)
          half_width = tf.cast(tf.math.round(tf.math.sqrt(
              erase_area / aspect_ratio) / 2), dtype=tf.int32)

          if 2 * half_height < image_height and 2 * half_width < image_width:
            center_height = tf.random.uniform(
                shape=[], minval=0, maxval=int(image_height - 2 * half_height),
                dtype=tf.int32)
            center_width = tf.random.uniform(
                shape=[], minval=0, maxval=int(image_width - 2 * half_width),
                dtype=tf.int32)
            
            image = _fill_rectangle(image, center_width, center_height,
                                half_width, half_height, replace=None)

            is_trial_successfull = True
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548

    return image


class MixupAndCutmix:
  """Applies Mixup and/or Cutmix to a batch of images.

  - Mixup: https://arxiv.org/abs/1710.09412
  - Cutmix: https://arxiv.org/abs/1905.04899

  Implementaion is inspired by https://github.com/rwightman/pytorch-image-models
  """

  def __init__(self, mixup_alpha: float = .8, cutmix_alpha: float = 1.,
               prob: float = 1.0, switch_prob: float = 0.5,
               label_smoothing: float = 0.1, num_classes: int = 1001):
    """Applies Mixup and/or Cutmix to a batch of images.

    Args:
      mixup_alpha (float, optional): For drawing a random lambda (`lam`) from a
        beta distribution (for each image). If zero Mixup is deactivated.
        Defaults to .8.
      cutmix_alpha (float, optional): For drawing a random lambda (`lam`) from
        a beta distribution (for each image). If zero Cutmix is deactivated.
        Defaults to 1..
      prob (float, optional): Of augmenting the batch. Defaults to 1.0.
      switch_prob (float, optional): Probability of applying Cutmix for the
        batch. Defaults to 0.5.
      label_smoothing (float, optional): Constant for label smoothing. Defaults
        to 0.1.
      num_classes (int, optional): Number of classes. Defaults to 1001.
    """
    self.mixup_alpha = mixup_alpha
    self.cutmix_alpha = cutmix_alpha
    self.mix_prob = prob
    self.switch_prob = switch_prob
    self.label_smoothing = label_smoothing
    self.num_classes = num_classes
    self.mode = 'batch'
    self.mixup_enabled = True

    if self.mixup_alpha and not self.cutmix_alpha:
      self.switch_prob = -1
    elif not self.mixup_alpha and self.cutmix_alpha:
      self.switch_prob = 1

  def __call__(self, images: tf.Tensor,
               labels: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
    return self.distort(images, labels)

  def distort(self, images: tf.Tensor,
              labels: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
    """Applies Mixup and/or Cutmix to batch of `images` and transforms the
      `labels` (incl. label smoothing).

    Args:
      images (tf.Tensor): Of shape [batch_size,height, width, 3] representing
        a batch of image.
      labels (tf.Tensor): Of shape [batch_size, ] representing the class id for
        each image of the batch.

    Returns:
      Tuple[tf.Tensor, tf.Tensor]: The augmented version of `image` and
        `labels`.
    """
    augment_cond = tf.less(tf.random.uniform(shape=[], minval=0., maxval=1.0),
                           self.mix_prob)

    return tf.cond(
        augment_cond,
        lambda: self._update_labels(*tf.cond(
            tf.less(tf.random.uniform(
                shape=[], minval=0., maxval=1.0), self.switch_prob),
            lambda: self._cutmix(images, labels),
            lambda: self._mixup(images, labels)
        )),
        lambda: (images, self._smooth_labels(labels))
    )

  @staticmethod
  def _sample_from_beta(alpha: float, beta: float, shape: tuple):
    sample_alpha = tf.random.gamma(shape, 1., beta=alpha)
    sample_beta = tf.random.gamma(shape, 1., beta=beta)
    return sample_alpha / (sample_alpha + sample_beta)

  def _cutmix(self, images: tf.Tensor,
              labels: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
    lam = MixupAndCutmix._sample_from_beta(
        self.cutmix_alpha, self.cutmix_alpha, labels.shape)

    ratio = tf.math.sqrt(1 - lam)

    batch_size = tf.shape(images)[0]
    image_height, image_width = tf.shape(images)[1], tf.shape(images)[2]

    cut_height = tf.cast(
        ratio * tf.cast(image_height, dtype=tf.float32), dtype=tf.int32)
    cut_width = tf.cast(
        ratio * tf.cast(image_height, dtype=tf.float32), dtype=tf.int32)

    random_center_height = tf.random.uniform(
        shape=[batch_size], minval=0, maxval=image_height, dtype=tf.int32)
    random_center_width = tf.random.uniform(
        shape=[batch_size], minval=0, maxval=image_width, dtype=tf.int32)

    bbox_area = cut_height * cut_width
    lam = 1. - bbox_area / (image_height * image_width)
    lam = tf.cast(lam, dtype=tf.float32)

    images = tf.map_fn(
        lambda x: _fill_rectangle(*x),
        (images, random_center_width, random_center_height, cut_width // 2,
            cut_height // 2, tf.reverse(images, [0])),
        dtype=(tf.float32, tf.int32, tf.int32, tf.int32, tf.int32, tf.float32),
        fn_output_signature=tf.TensorSpec(images.shape[1:], dtype=tf.float32))

    return images, labels, lam

  def _mixup(self, images: tf.Tensor,
             labels: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
    lam = MixupAndCutmix._sample_from_beta(
        self.mixup_alpha, self.mixup_alpha, labels.shape)
    lam = tf.reshape(lam, [-1, 1, 1, 1])
    images = lam * images + (1. - lam) * tf.reverse(images, [0])

    return images, labels, tf.squeeze(lam)

  def _smooth_labels(self, labels: tf.Tensor) -> tf.Tensor:
    off_value = self.label_smoothing / self.num_classes
    on_value = 1. - self.label_smoothing + off_value

    smooth_labels = tf.one_hot(labels, self.num_classes,
                               on_value=on_value, off_value=off_value)
    return smooth_labels

  def _update_labels(self, images: tf.Tensor, labels: tf.Tensor,
                     lam: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
    labels_1 = self._smooth_labels(labels)
    labels_2 = tf.reverse(labels_1, [0])

    lam = tf.reshape(lam, [-1, 1])
    labels = lam * labels_1 + (1. - lam) * labels_2

    return images, labels