classification_input.py 9.53 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
"""Classification decoder and parser."""
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
16
from typing import Any, Dict, List, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
18
19
# Import libraries
import tensorflow as tf

20
from official.vision.beta.configs import common
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
from official.vision.beta.dataloaders import decoder
from official.vision.beta.dataloaders import parser
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
from official.vision.beta.ops import augment
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
25
26
27
28
from official.vision.beta.ops import preprocess_ops

MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
29
30
31
DEFAULT_IMAGE_FIELD_KEY = 'image/encoded'
DEFAULT_LABEL_FIELD_KEY = 'image/class/label'

Abdullah Rashwan's avatar
Abdullah Rashwan committed
32
33
34
35

class Decoder(decoder.Decoder):
  """A tf.Example decoder for classification task."""

Fan Yang's avatar
Fan Yang committed
36
  def __init__(self,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
               image_field_key: str = DEFAULT_IMAGE_FIELD_KEY,
               label_field_key: str = DEFAULT_LABEL_FIELD_KEY,
               is_multilabel: bool = False,
               keys_to_features: Optional[Dict[str, Any]] = None):
    if not keys_to_features:
      keys_to_features = {
          image_field_key:
              tf.io.FixedLenFeature((), tf.string, default_value=''),
      }
      if is_multilabel:
        keys_to_features.update(
            {label_field_key: tf.io.VarLenFeature(dtype=tf.int64)})
      else:
        keys_to_features.update({
            label_field_key:
                tf.io.FixedLenFeature((), tf.int64, default_value=-1)
        })
    self._keys_to_features = keys_to_features
Abdullah Rashwan's avatar
Abdullah Rashwan committed
55

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
56
  def decode(self, serialized_example):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
57
58
59
60
61
62
63
64
    return tf.io.parse_single_example(
        serialized_example, self._keys_to_features)


class Parser(parser.Parser):
  """Parser to parse an image and its annotations into a dictionary of tensors."""

  def __init__(self,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
65
66
               output_size: List[int],
               num_classes: float,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
67
68
               image_field_key: str = DEFAULT_IMAGE_FIELD_KEY,
               label_field_key: str = DEFAULT_LABEL_FIELD_KEY,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
69
               decode_jpeg_only: bool = True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
               aug_rand_hflip: bool = True,
71
               aug_type: Optional[common.Augmentation] = None,
72
73
               color_jitter: float = 0.,
               random_erasing: Optional[common.RandomErasing] = None,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
74
               is_multilabel: bool = False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
75
               dtype: str = 'float32'):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
76
77
78
    """Initializes parameters for parsing annotations in the dataset.

    Args:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
79
      output_size: `Tensor` or `list` for [height, width] of output image. The
Abdullah Rashwan's avatar
Abdullah Rashwan committed
80
81
        output_size should be divided by the largest feature stride 2^max_level.
      num_classes: `float`, number of classes.
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
82
83
      image_field_key: `str`, the key name to encoded image in tf.Example.
      label_field_key: `str`, the key name to label in tf.Example.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
84
85
      decode_jpeg_only: `bool`, if True, only JPEG format is decoded, this is
        faster than decoding other types. Default is True.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
86
87
      aug_rand_hflip: `bool`, if True, augment training with random
        horizontal flip.
88
89
      aug_type: An optional Augmentation object to choose from AutoAugment and
        RandAugment.
90
      color_jitter: if > 0 the input image will be augmented by color jitter.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
91
      is_multilabel: A `bool`, whether or not each example has multiple labels.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
92
93
94
95
96
97
      dtype: `str`, cast output image in dtype. It can be 'float32', 'float16',
        or 'bfloat16'.
    """
    self._output_size = output_size
    self._aug_rand_hflip = aug_rand_hflip
    self._num_classes = num_classes
Fan Yang's avatar
Fan Yang committed
98
    self._image_field_key = image_field_key
Abdullah Rashwan's avatar
Abdullah Rashwan committed
99
100
101
102
103
104
105
106
    if dtype == 'float32':
      self._dtype = tf.float32
    elif dtype == 'float16':
      self._dtype = tf.float16
    elif dtype == 'bfloat16':
      self._dtype = tf.bfloat16
    else:
      raise ValueError('dtype {!r} is not supported!'.format(dtype))
107
108
109
110
111
112
113
    if aug_type:
      if aug_type.type == 'autoaug':
        self._augmenter = augment.AutoAugment(
            augmentation_name=aug_type.autoaug.augmentation_name,
            cutout_const=aug_type.autoaug.cutout_const,
            translate_const=aug_type.autoaug.translate_const)
      elif aug_type.type == 'randaug':
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
        self._augmenter = augment.RandAugment(
115
116
117
            num_layers=aug_type.randaug.num_layers,
            magnitude=aug_type.randaug.magnitude,
            cutout_const=aug_type.randaug.cutout_const,
Fan Yang's avatar
Fan Yang committed
118
            translate_const=aug_type.randaug.translate_const,
119
120
            prob_to_apply=aug_type.randaug.prob_to_apply,
            exclude_ops=aug_type.randaug.exclude_ops)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
121
      else:
122
123
        raise ValueError('Augmentation policy {} not supported.'.format(
            aug_type.type))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
124
125
    else:
      self._augmenter = None
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
126
    self._label_field_key = label_field_key
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    self._color_jitter = color_jitter
    if random_erasing:
      self._random_erasing = augment.RandomErasing(
          probability=random_erasing.probability,
          min_area=random_erasing.min_area,
          max_area=random_erasing.max_area,
          min_aspect=random_erasing.min_aspect,
          max_aspect=random_erasing.max_aspect,
          min_count=random_erasing.min_count,
          max_count=random_erasing.max_count,
          trials=random_erasing.trials
      )
    else:
      self._random_erasing = None
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
141
    self._is_multilabel = is_multilabel
Abdullah Rashwan's avatar
Abdullah Rashwan committed
142
    self._decode_jpeg_only = decode_jpeg_only
Abdullah Rashwan's avatar
Abdullah Rashwan committed
143
144
145

  def _parse_train_data(self, decoded_tensors):
    """Parses data for training."""
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
146
147
148
149
150
151
152
153
154
155
156
    image = self._parse_train_image(decoded_tensors)
    label = tf.cast(decoded_tensors[self._label_field_key], dtype=tf.int32)
    if self._is_multilabel:
      if isinstance(label, tf.sparse.SparseTensor):
        label = tf.sparse.to_dense(label)
      label = tf.reduce_sum(tf.one_hot(label, self._num_classes), axis=0)
    return image, label

  def _parse_eval_data(self, decoded_tensors):
    """Parses data for evaluation."""
    image = self._parse_eval_image(decoded_tensors)
Fan Yang's avatar
Fan Yang committed
157
    label = tf.cast(decoded_tensors[self._label_field_key], dtype=tf.int32)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
158
159
160
161
162
163
164
165
    if self._is_multilabel:
      if isinstance(label, tf.sparse.SparseTensor):
        label = tf.sparse.to_dense(label)
      label = tf.reduce_sum(tf.one_hot(label, self._num_classes), axis=0)
    return image, label

  def _parse_train_image(self, decoded_tensors):
    """Parses image data for training."""
Fan Yang's avatar
Fan Yang committed
166
    image_bytes = decoded_tensors[self._image_field_key]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
167

Abdullah Rashwan's avatar
Abdullah Rashwan committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    if self._decode_jpeg_only:
      image_shape = tf.image.extract_jpeg_shape(image_bytes)

      # Crops image.
      cropped_image = preprocess_ops.random_crop_image_v2(
          image_bytes, image_shape)
      image = tf.cond(
          tf.reduce_all(tf.equal(tf.shape(cropped_image), image_shape)),
          lambda: preprocess_ops.center_crop_image_v2(image_bytes, image_shape),
          lambda: cropped_image)
    else:
      # Decodes image.
      image = tf.io.decode_image(image_bytes, channels=3)
      image.set_shape([None, None, 3])

      # Crops image.
      cropped_image = preprocess_ops.random_crop_image(image)

      image = tf.cond(
          tf.reduce_all(tf.equal(tf.shape(cropped_image), tf.shape(image))),
          lambda: preprocess_ops.center_crop_image(image),
          lambda: cropped_image)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
190
191
192
193

    if self._aug_rand_hflip:
      image = tf.image.random_flip_left_right(image)

194
195
196
197
198
    # Color jitter.
    if self._color_jitter > 0:
      image = preprocess_ops.color_jitter(
          image, self._color_jitter, self._color_jitter, self._color_jitter)

Simon Geisler's avatar
Simon Geisler committed
199
200
201
202
203
    # Resizes image.
    image = tf.image.resize(
        image, self._output_size, method=tf.image.ResizeMethod.BILINEAR)
    image.set_shape([self._output_size[0], self._output_size[1], 3])

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
204
205
206
207
    # Apply autoaug or randaug.
    if self._augmenter is not None:
      image = self._augmenter.distort(image)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
208
209
210
211
212
    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)

213
214
215
216
    # Random erasing after the image has been normalized
    if self._random_erasing is not None:
      image = self._random_erasing.distort(image)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
217
218
219
    # Convert image to self._dtype.
    image = tf.image.convert_image_dtype(image, self._dtype)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
220
    return image
Abdullah Rashwan's avatar
Abdullah Rashwan committed
221

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
222
223
  def _parse_eval_image(self, decoded_tensors):
    """Parses image data for evaluation."""
Fan Yang's avatar
Fan Yang committed
224
    image_bytes = decoded_tensors[self._image_field_key]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
225

Abdullah Rashwan's avatar
Abdullah Rashwan committed
226
227
228
229
230
231
232
233
234
235
236
237
    if self._decode_jpeg_only:
      image_shape = tf.image.extract_jpeg_shape(image_bytes)

      # Center crops.
      image = preprocess_ops.center_crop_image_v2(image_bytes, image_shape)
    else:
      # Decodes image.
      image = tf.io.decode_image(image_bytes, channels=3)
      image.set_shape([None, None, 3])

      # Center crops.
      image = preprocess_ops.center_crop_image(image)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
238
239
240

    image = tf.image.resize(
        image, self._output_size, method=tf.image.ResizeMethod.BILINEAR)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
241
    image.set_shape([self._output_size[0], self._output_size[1], 3])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
242
243
244
245
246
247
248
249
250

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)

    # Convert image to self._dtype.
    image = tf.image.convert_image_dtype(image, self._dtype)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
251
    return image