inception_v2.py 23.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the definition for inception v2 classification network."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

Alex Kurakin's avatar
Alex Kurakin committed
23
24
from nets import inception_utils

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
slim = tf.contrib.slim
trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev)


def inception_v2_base(inputs,
                      final_endpoint='Mixed_5c',
                      min_depth=16,
                      depth_multiplier=1.0,
                      scope=None):
  """Inception v2 (6a2).

  Constructs an Inception v2 network from inputs to the given final endpoint.
  This method can construct the network up to the layer inception(5b) as
  described in http://arxiv.org/abs/1502.03167.

  Args:
    inputs: a tensor of shape [batch_size, height, width, channels].
    final_endpoint: specifies the endpoint to construct the network up to. It
      can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
      'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'Mixed_4a',
      'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a', 'Mixed_5b',
      'Mixed_5c'].
    min_depth: Minimum depth value (number of channels) for all convolution ops.
      Enforced when depth_multiplier < 1, and not an active constraint when
      depth_multiplier >= 1.
    depth_multiplier: Float multiplier for the depth (number of channels)
      for all convolution ops. The value must be greater than zero. Typical
      usage will be to set this value in (0, 1) to reduce the number of
      parameters or computation cost of the model.
    scope: Optional variable_scope.

  Returns:
    tensor_out: output tensor corresponding to the final_endpoint.
    end_points: a set of activations for external use, for example summaries or
                losses.

  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values,
                or depth_multiplier <= 0
  """

  # end_points will collect relevant activations for external use, for example
  # summaries or losses.
  end_points = {}

  # Used to find thinned depths for each layer.
  if depth_multiplier <= 0:
    raise ValueError('depth_multiplier is not greater than zero.')
  depth = lambda d: max(int(d * depth_multiplier), min_depth)

  with tf.variable_scope(scope, 'InceptionV2', [inputs]):
    with slim.arg_scope(
        [slim.conv2d, slim.max_pool2d, slim.avg_pool2d, slim.separable_conv2d],
        stride=1, padding='SAME'):

      # Note that sizes in the comments below assume an input spatial size of
      # 224x224, however, the inputs can be of any size greater 32x32.

      # 224 x 224 x 3
      end_point = 'Conv2d_1a_7x7'
      # depthwise_multiplier here is different from depth_multiplier.
      # depthwise_multiplier determines the output channels of the initial
      # depthwise conv (see docs for tf.nn.separable_conv2d), while
      # depth_multiplier controls the # channels of the subsequent 1x1
      # convolution. Must have
      #   in_channels * depthwise_multipler <= out_channels
      # so that the separable convolution is not overparameterized.
      depthwise_multiplier = min(int(depth(64) / 3), 8)
      net = slim.separable_conv2d(
          inputs, depth(64), [7, 7], depth_multiplier=depthwise_multiplier,
          stride=2, weights_initializer=trunc_normal(1.0),
          scope=end_point)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 112 x 112 x 64
      end_point = 'MaxPool_2a_3x3'
      net = slim.max_pool2d(net, [3, 3], scope=end_point, stride=2)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 56 x 56 x 64
      end_point = 'Conv2d_2b_1x1'
      net = slim.conv2d(net, depth(64), [1, 1], scope=end_point,
                        weights_initializer=trunc_normal(0.1))
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 56 x 56 x 64
      end_point = 'Conv2d_2c_3x3'
      net = slim.conv2d(net, depth(192), [3, 3], scope=end_point)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 56 x 56 x 192
      end_point = 'MaxPool_3a_3x3'
      net = slim.max_pool2d(net, [3, 3], scope=end_point, stride=2)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 28 x 28 x 192
      # Inception module.
      end_point = 'Mixed_3b'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(64), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(32), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
148
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 28 x 28 x 256
      end_point = 'Mixed_3c'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
178
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 28 x 28 x 320
      end_point = 'Mixed_4a'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_0 = slim.conv2d(branch_0, depth(160), [3, 3], stride=2,
                                 scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(
              branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3')
          branch_1 = slim.conv2d(
              branch_1, depth(96), [3, 3], stride=2, scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.max_pool2d(
              net, [3, 3], stride=2, scope='MaxPool_1a_3x3')
203
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2])
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4b'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(224), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(
              branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
233
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4c'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(128), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
263
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4d'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(160), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(160), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(160), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
293
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points

      # 14 x 14 x 576
      end_point = 'Mixed_4e'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(96), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(192), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(160), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(192), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(192), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
324
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_5a'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_0 = slim.conv2d(branch_0, depth(192), [3, 3], stride=2,
                                 scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(256), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_1 = slim.conv2d(branch_1, depth(256), [3, 3], stride=2,
                                 scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.max_pool2d(net, [3, 3], stride=2,
                                     scope='MaxPool_1a_3x3')
349
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2])
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 7 x 7 x 1024
      end_point = 'Mixed_5b'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(320), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(160), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
379
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points

      # 7 x 7 x 1024
      end_point = 'Mixed_5c'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(320), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
410
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
    raise ValueError('Unknown final endpoint %s' % final_endpoint)


def inception_v2(inputs,
                 num_classes=1000,
                 is_training=True,
                 dropout_keep_prob=0.8,
                 min_depth=16,
                 depth_multiplier=1.0,
                 prediction_fn=slim.softmax,
                 spatial_squeeze=True,
                 reuse=None,
                 scope='InceptionV2'):
  """Inception v2 model for classification.

  Constructs an Inception v2 network for classification as described in
  http://arxiv.org/abs/1502.03167.

  The default image size used to train this network is 224x224.

  Args:
    inputs: a tensor of shape [batch_size, height, width, channels].
    num_classes: number of predicted classes.
    is_training: whether is training or not.
    dropout_keep_prob: the percentage of activation values that are retained.
    min_depth: Minimum depth value (number of channels) for all convolution ops.
      Enforced when depth_multiplier < 1, and not an active constraint when
      depth_multiplier >= 1.
    depth_multiplier: Float multiplier for the depth (number of channels)
      for all convolution ops. The value must be greater than zero. Typical
      usage will be to set this value in (0, 1) to reduce the number of
      parameters or computation cost of the model.
    prediction_fn: a function to get predictions out of logits.
Neal Wu's avatar
Neal Wu committed
446
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.

  Returns:
    logits: the pre-softmax activations, a tensor of size
      [batch_size, num_classes]
    end_points: a dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values,
                or depth_multiplier <= 0
  """
  if depth_multiplier <= 0:
    raise ValueError('depth_multiplier is not greater than zero.')

  # Final pooling and prediction
  with tf.variable_scope(scope, 'InceptionV2', [inputs, num_classes],
                         reuse=reuse) as scope:
    with slim.arg_scope([slim.batch_norm, slim.dropout],
                        is_training=is_training):
      net, end_points = inception_v2_base(
          inputs, scope=scope, min_depth=min_depth,
          depth_multiplier=depth_multiplier)
      with tf.variable_scope('Logits'):
        kernel_size = _reduced_kernel_size_for_small_input(net, [7, 7])
        net = slim.avg_pool2d(net, kernel_size, padding='VALID',
                              scope='AvgPool_1a_{}x{}'.format(*kernel_size))
        # 1 x 1 x 1024
        net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b')
        logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                             normalizer_fn=None, scope='Conv2d_1c_1x1')
        if spatial_squeeze:
          logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')
      end_points['Logits'] = logits
      end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
  return logits, end_points
inception_v2.default_image_size = 224


def _reduced_kernel_size_for_small_input(input_tensor, kernel_size):
  """Define kernel size which is automatically reduced for small input.

  If the shape of the input images is unknown at graph construction time this
  function assumes that the input images are is large enough.

  Args:
    input_tensor: input tensor of size [batch_size, height, width, channels].
    kernel_size: desired kernel size of length 2: [kernel_height, kernel_width]

  Returns:
    a tensor with the kernel size.

  TODO(jrru): Make this function work with unknown shapes. Theoretically, this
  can be done with the code below. Problems are two-fold: (1) If the shape was
  known, it will be lost. (2) inception.slim.ops._two_element_tuple cannot
  handle tensors that define the kernel size.
      shape = tf.shape(input_tensor)
      return = tf.pack([tf.minimum(shape[1], kernel_size[0]),
                        tf.minimum(shape[2], kernel_size[1])])

  """
  shape = input_tensor.get_shape().as_list()
  if shape[1] is None or shape[2] is None:
    kernel_size_out = kernel_size
  else:
    kernel_size_out = [min(shape[1], kernel_size[0]),
                       min(shape[2], kernel_size[1])]
  return kernel_size_out


Alex Kurakin's avatar
Alex Kurakin committed
520
inception_v2_arg_scope = inception_utils.inception_arg_scope