model_lib_v2.py 39.7 KB
Newer Older
pkulzc's avatar
pkulzc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Constructs model, inputs, and training environment."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
22
import os
pkulzc's avatar
pkulzc committed
23
24
import time

25
import tensorflow.compat.v1 as tf
26
import tensorflow.compat.v2 as tf2
pkulzc's avatar
pkulzc committed
27
28
29
30
31
32

from object_detection import eval_util
from object_detection import inputs
from object_detection import model_lib
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
33
from object_detection.protos import train_pb2
pkulzc's avatar
pkulzc committed
34
35
36
from object_detection.utils import config_util
from object_detection.utils import label_map_util
from object_detection.utils import ops
37
38
39
40
41
42
43
44
45
from object_detection.utils import visualization_utils as vutils

# pylint: disable=g-import-not-at-top
try:
  from tensorflow.contrib import tpu as contrib_tpu
except ImportError:
  # TF 2.0 doesn't ship with contrib.
  pass
# pylint: enable=g-import-not-at-top
pkulzc's avatar
pkulzc committed
46
47
48
49

MODEL_BUILD_UTIL_MAP = model_lib.MODEL_BUILD_UTIL_MAP


50
51
52
53
54
55
RESTORE_MAP_ERROR_TEMPLATE = (
    'Since we are restoring a v2 style checkpoint'
    ' restore_map was expected to return a (str -> Model) mapping,'
    ' but we received a ({} -> {}) mapping instead.'
)

pkulzc's avatar
pkulzc committed
56
57
58

def _compute_losses_and_predictions_dicts(
    model, features, labels,
59
    add_regularization_loss=True):
pkulzc's avatar
pkulzc committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
  """Computes the losses dict and predictions dict for a model on inputs.

  Args:
    model: a DetectionModel (based on Keras).
    features: Dictionary of feature tensors from the input dataset.
      Should be in the format output by `inputs.train_input` and
      `inputs.eval_input`.
        features[fields.InputDataFields.image] is a [batch_size, H, W, C]
          float32 tensor with preprocessed images.
        features[HASH_KEY] is a [batch_size] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
        features[fields.InputDataFields.original_image] (optional) is a
          [batch_size, H, W, C] float32 tensor with original images.
    labels: A dictionary of groundtruth tensors post-unstacking. The original
      labels are of the form returned by `inputs.train_input` and
      `inputs.eval_input`. The shapes may have been modified by unstacking with
      `model_lib.unstack_batch`. However, the dictionary includes the following
      fields.
        labels[fields.InputDataFields.num_groundtruth_boxes] is a
          int32 tensor indicating the number of valid groundtruth boxes
          per image.
        labels[fields.InputDataFields.groundtruth_boxes] is a float32 tensor
          containing the corners of the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a float32
          one-hot tensor of classes.
        labels[fields.InputDataFields.groundtruth_weights] is a float32 tensor
          containing groundtruth weights for the boxes.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          float32 tensor containing only binary values, which represent
          instance masks for objects.
        labels[fields.InputDataFields.groundtruth_keypoints] is a
          float32 tensor containing keypoints for each box.
96
97
98
99
100
101
        labels[fields.InputDataFields.groundtruth_dp_num_points] is an int32
          tensor with the number of sampled DensePose points per object.
        labels[fields.InputDataFields.groundtruth_dp_part_ids] is an int32
          tensor with the DensePose part ids (0-indexed) per object.
        labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
          float32 tensor with the DensePose surface coordinates.
102
103
104
105
        labels[fields.InputDataFields.groundtruth_group_of] is a tf.bool tensor
          containing group_of annotations.
        labels[fields.InputDataFields.groundtruth_labeled_classes] is a float32
          k-hot tensor of classes.
106
107
        labels[fields.InputDataFields.groundtruth_track_ids] is a int32
          tensor of track IDs.
pkulzc's avatar
pkulzc committed
108
109
110
111
112
113
114
115
116
117
118
119
    add_regularization_loss: Whether or not to include the model's
      regularization loss in the losses dictionary.

  Returns:
    A tuple containing the losses dictionary (with the total loss under
    the key 'Loss/total_loss'), and the predictions dictionary produced by
    `model.predict`.

  """
  model_lib.provide_groundtruth(model, labels)
  preprocessed_images = features[fields.InputDataFields.image]

120
121
  prediction_dict = model.predict(
      preprocessed_images,
Kaushik Shivakumar's avatar
Kaushik Shivakumar committed
122
123
      features[fields.InputDataFields.true_image_shape],
      **model.get_side_inputs(features))
124
  prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict)
pkulzc's avatar
pkulzc committed
125
126
127
128
129
130
131
132
133
134

  losses_dict = model.loss(
      prediction_dict, features[fields.InputDataFields.true_image_shape])
  losses = [loss_tensor for loss_tensor in losses_dict.values()]
  if add_regularization_loss:
    # TODO(kaftan): As we figure out mixed precision & bfloat 16, we may
    ## need to convert these regularization losses from bfloat16 to float32
    ## as well.
    regularization_losses = model.regularization_losses()
    if regularization_losses:
135
136
      regularization_losses = ops.bfloat16_to_float32_nested(
          regularization_losses)
pkulzc's avatar
pkulzc committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
      regularization_loss = tf.add_n(
          regularization_losses, name='regularization_loss')
      losses.append(regularization_loss)
      losses_dict['Loss/regularization_loss'] = regularization_loss

  total_loss = tf.add_n(losses, name='total_loss')
  losses_dict['Loss/total_loss'] = total_loss

  return losses_dict, prediction_dict


# TODO(kaftan): Explore removing learning_rate from this method & returning
## The full losses dict instead of just total_loss, then doing all summaries
## saving in a utility method called by the outer training loop.
# TODO(kaftan): Explore adding gradient summaries
def eager_train_step(detection_model,
                     features,
                     labels,
                     unpad_groundtruth_tensors,
                     optimizer,
                     learning_rate,
                     add_regularization_loss=True,
                     clip_gradients_value=None,
                     global_step=None,
                     num_replicas=1.0):
  """Process a single training batch.

  This method computes the loss for the model on a single training batch,
  while tracking the gradients with a gradient tape. It then updates the
  model variables with the optimizer, clipping the gradients if
  clip_gradients_value is present.

  This method can run eagerly or inside a tf.function.

  Args:
    detection_model: A DetectionModel (based on Keras) to train.
    features: Dictionary of feature tensors from the input dataset.
      Should be in the format output by `inputs.train_input.
        features[fields.InputDataFields.image] is a [batch_size, H, W, C]
          float32 tensor with preprocessed images.
        features[HASH_KEY] is a [batch_size] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
        features[fields.InputDataFields.original_image] (optional, not used
          during training) is a
          [batch_size, H, W, C] float32 tensor with original images.
    labels: A dictionary of groundtruth tensors. This method unstacks
      these labels using model_lib.unstack_batch. The stacked labels are of
      the form returned by `inputs.train_input` and `inputs.eval_input`.
        labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
          int32 tensor indicating the number of valid groundtruth boxes
          per image.
        labels[fields.InputDataFields.groundtruth_boxes] is a
          [batch_size, num_boxes, 4] float32 tensor containing the corners of
          the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [batch_size, num_boxes, num_classes] float32 one-hot tensor of
          classes. num_classes includes the background class.
        labels[fields.InputDataFields.groundtruth_weights] is a
          [batch_size, num_boxes] float32 tensor containing groundtruth weights
          for the boxes.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [batch_size, num_boxes, H, W] float32 tensor containing only binary
          values, which represent instance masks for objects.
        labels[fields.InputDataFields.groundtruth_keypoints] is a
          [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
          keypoints for each box.
207
208
209
210
211
212
213
214
215
216
217
        labels[fields.InputDataFields.groundtruth_dp_num_points] is a
          [batch_size, num_boxes] int32 tensor with the number of DensePose
          sampled points per instance.
        labels[fields.InputDataFields.groundtruth_dp_part_ids] is a
          [batch_size, num_boxes, max_sampled_points] int32 tensor with the
          part ids (0-indexed) for each instance.
        labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
          [batch_size, num_boxes, max_sampled_points, 4] float32 tensor with the
          surface coordinates for each point. Each surface coordinate is of the
          form (y, x, v, u) where (y, x) are normalized image locations and
          (v, u) are part-relative normalized surface coordinates.
218
219
        labels[fields.InputDataFields.groundtruth_labeled_classes] is a float32
          k-hot tensor of classes.
220
221
        labels[fields.InputDataFields.groundtruth_track_ids] is a int32
          tensor of track IDs.
pkulzc's avatar
pkulzc committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    unpad_groundtruth_tensors: A parameter passed to unstack_batch.
    optimizer: The training optimizer that will update the variables.
    learning_rate: The learning rate tensor for the current training step.
      This is used only for TensorBoard logging purposes, it does not affect
       model training.
    add_regularization_loss: Whether or not to include the model's
      regularization loss in the losses dictionary.
    clip_gradients_value: If this is present, clip the gradients global norm
      at this value using `tf.clip_by_global_norm`.
    global_step: The current training step. Used for TensorBoard logging
      purposes. This step is not updated by this function and must be
      incremented separately.
    num_replicas: The number of replicas in the current distribution strategy.
      This is used to scale the total loss so that training in a distribution
      strategy works correctly.

  Returns:
    The total loss observed at this training step
  """
  # """Execute a single training step in the TF v2 style loop."""
  is_training = True

  detection_model._is_training = is_training  # pylint: disable=protected-access
  tf.keras.backend.set_learning_phase(is_training)

  labels = model_lib.unstack_batch(
      labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)

  with tf.GradientTape() as tape:
    losses_dict, _ = _compute_losses_and_predictions_dicts(
252
        detection_model, features, labels, add_regularization_loss)
pkulzc's avatar
pkulzc committed
253
254
255
256
257
258
259
260

    total_loss = losses_dict['Loss/total_loss']

    # Normalize loss for num replicas
    total_loss = tf.math.divide(total_loss,
                                tf.constant(num_replicas, dtype=tf.float32))
    losses_dict['Loss/normalized_total_loss'] = total_loss

261
262
263
  for loss_type in losses_dict:
    tf.compat.v2.summary.scalar(
        loss_type, losses_dict[loss_type], step=global_step)
pkulzc's avatar
pkulzc committed
264
265
266
267
268
269
270
271

  trainable_variables = detection_model.trainable_variables

  gradients = tape.gradient(total_loss, trainable_variables)

  if clip_gradients_value:
    gradients, _ = tf.clip_by_global_norm(gradients, clip_gradients_value)
  optimizer.apply_gradients(zip(gradients, trainable_variables))
272
  tf.compat.v2.summary.scalar('learning_rate', learning_rate, step=global_step)
273
274
275
276
277
  tf.compat.v2.summary.image(
      name='train_input_images',
      step=global_step,
      data=features[fields.InputDataFields.image],
      max_outputs=3)
pkulzc's avatar
pkulzc committed
278
279
280
  return total_loss


281
282
283
284
def validate_tf_v2_checkpoint_restore_map(checkpoint_restore_map):
  """Ensure that given dict is a valid TF v2 style restore map.

  Args:
285
286
    checkpoint_restore_map: A nested dict mapping strings to
      tf.keras.Model objects.
287
288
289
290
291
292
293
294

  Raises:
    ValueError: If they keys in checkpoint_restore_map are not strings or if
      the values are not keras Model objects.

  """

  for key, value in checkpoint_restore_map.items():
295
296
297
    if not (isinstance(key, str) and
            (isinstance(value, tf.Module)
             or isinstance(value, tf.train.Checkpoint))):
298
299
300
301
302
303
      if isinstance(key, str) and isinstance(value, dict):
        validate_tf_v2_checkpoint_restore_map(value)
      else:
        raise TypeError(
            RESTORE_MAP_ERROR_TEMPLATE.format(key.__class__.__name__,
                                              value.__class__.__name__))
304
305


306
307
308
309
310
311
def is_object_based_checkpoint(checkpoint_path):
  """Returns true if `checkpoint_path` points to an object-based checkpoint."""
  var_names = [var[0] for var in tf.train.list_variables(checkpoint_path)]
  return '_CHECKPOINTABLE_OBJECT_GRAPH' in var_names


pkulzc's avatar
pkulzc committed
312
def load_fine_tune_checkpoint(
313
    model, checkpoint_path, checkpoint_type, checkpoint_version, input_dataset,
314
    unpad_groundtruth_tensors):
pkulzc's avatar
pkulzc committed
315
316
317
318
319
320
  """Load a fine tuning classification or detection checkpoint.

  To make sure the model variables are all built, this method first executes
  the model by computing a dummy loss. (Models might not have built their
  variables before their first execution)

321
  It then loads an object-based classification or detection checkpoint.
pkulzc's avatar
pkulzc committed
322
323
324
325
326
327
328
329
330
331
332

  This method updates the model in-place and does not return a value.

  Args:
    model: A DetectionModel (based on Keras) to load a fine-tuning
      checkpoint for.
    checkpoint_path: Directory with checkpoints file or path to checkpoint.
    checkpoint_type: Whether to restore from a full detection
      checkpoint (with compatible variable names) or to restore from a
      classification checkpoint for initialization prior to training.
      Valid values: `detection`, `classification`.
333
    checkpoint_version: train_pb2.CheckpointVersion.V1 or V2 enum indicating
334
335
      whether to load checkpoints in V1 style or V2 style.  In this binary
      we only support V2 style (object-based) checkpoints.
pkulzc's avatar
pkulzc committed
336
337
338
    input_dataset: The tf.data Dataset the model is being trained on. Needed
      to get the shapes for the dummy loss computation.
    unpad_groundtruth_tensors: A parameter passed to unstack_batch.
339
340
341
342
343

  Raises:
    IOError: if `checkpoint_path` does not point at a valid object-based
      checkpoint
    ValueError: if `checkpoint_version` is not train_pb2.CheckpointVersion.V2
pkulzc's avatar
pkulzc committed
344
  """
345
346
347
348
349
  if not is_object_based_checkpoint(checkpoint_path):
    raise IOError('Checkpoint is expected to be an object-based checkpoint.')
  if checkpoint_version == train_pb2.CheckpointVersion.V1:
    raise ValueError('Checkpoint version should be V2')

pkulzc's avatar
pkulzc committed
350
351
  features, labels = iter(input_dataset).next()

352
  @tf.function
pkulzc's avatar
pkulzc committed
353
354
355
356
357
358
359
360
361
362
  def _dummy_computation_fn(features, labels):
    model._is_training = False  # pylint: disable=protected-access
    tf.keras.backend.set_learning_phase(False)

    labels = model_lib.unstack_batch(
        labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)

    return _compute_losses_and_predictions_dicts(
        model,
        features,
363
        labels)
pkulzc's avatar
pkulzc committed
364
365

  strategy = tf.compat.v2.distribute.get_strategy()
366
367
368
369
370
371
372
373
374
375
376
377
  if hasattr(tf.distribute.Strategy, 'run'):
    strategy.run(
        _dummy_computation_fn, args=(
            features,
            labels,
        ))
  else:
    strategy.experimental_run_v2(
        _dummy_computation_fn, args=(
            features,
            labels,
        ))
378

379
380
381
382
383
  restore_from_objects_dict = model.restore_from_objects(
      fine_tune_checkpoint_type=checkpoint_type)
  validate_tf_v2_checkpoint_restore_map(restore_from_objects_dict)
  ckpt = tf.train.Checkpoint(**restore_from_objects_dict)
  ckpt.restore(checkpoint_path).assert_existing_objects_matched()
384
385


386
def get_filepath(strategy, filepath):
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
  """Get appropriate filepath for worker.

  Args:
    strategy: A tf.distribute.Strategy object.
    filepath: A path to where the Checkpoint object is stored.

  Returns:
    A temporary filepath for non-chief workers to use or the original filepath
    for the chief.
  """
  if strategy.extended.should_checkpoint:
    return filepath
  else:
    # TODO(vighneshb) Replace with the public API when TF exposes it.
    task_id = strategy.extended._task_id  # pylint:disable=protected-access
    return os.path.join(filepath, 'temp_worker_{:03d}'.format(task_id))


405
def clean_temporary_directories(strategy, filepath):
406
407
408
409
410
411
412
413
414
415
416
  """Temporary directory clean up for MultiWorker Mirrored Strategy.

  This is needed for all non-chief workers.

  Args:
    strategy: A tf.distribute.Strategy object.
    filepath: The filepath for the temporary directory.
  """
  if not strategy.extended.should_checkpoint:
    if tf.io.gfile.exists(filepath) and tf.io.gfile.isdir(filepath):
      tf.io.gfile.rmtree(filepath)
pkulzc's avatar
pkulzc committed
417
418
419
420
421
422
423
424
425


def train_loop(
    pipeline_config_path,
    model_dir,
    config_override=None,
    train_steps=None,
    use_tpu=False,
    save_final_config=False,
426
    checkpoint_every_n=1000,
427
    checkpoint_max_to_keep=7,
428
    record_summaries=True,
429
    **kwargs):
pkulzc's avatar
pkulzc committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
  """Trains a model using eager + functions.

  This method:
    1. Processes the pipeline configs
    2. (Optionally) saves the as-run config
    3. Builds the model & optimizer
    4. Gets the training input data
    5. Loads a fine-tuning detection or classification checkpoint if requested
    6. Loops over the train data, executing distributed training steps inside
       tf.functions.
    7. Checkpoints the model every `checkpoint_every_n` training steps.
    8. Logs the training metrics as TensorBoard summaries.

  Args:
    pipeline_config_path: A path to a pipeline config file.
    model_dir:
      The directory to save checkpoints and summaries to.
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    use_tpu: Boolean, whether training and evaluation should run on TPU.
    save_final_config: Whether to save final config (obtained after applying
      overrides) to `model_dir`.
    checkpoint_every_n:
      Checkpoint every n training steps.
456
457
    checkpoint_max_to_keep:
      int, the number of most recent checkpoints to keep in the model directory.
458
    record_summaries: Boolean, whether or not to record summaries.
pkulzc's avatar
pkulzc committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
    **kwargs: Additional keyword arguments for configuration override.
  """
  ## Parse the configs
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']

  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
  kwargs.update({
      'train_steps': train_steps,
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
  })
  configs = merge_external_params_with_configs(
476
      configs, None, kwargs_dict=kwargs)
pkulzc's avatar
pkulzc committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']

  unpad_groundtruth_tensors = train_config.unpad_groundtruth_tensors
  add_regularization_loss = train_config.add_regularization_loss
  clip_gradients_value = None
  if train_config.gradient_clipping_by_norm > 0:
    clip_gradients_value = train_config.gradient_clipping_by_norm

  # update train_steps from config but only when non-zero value is provided
  if train_steps is None and train_config.num_steps != 0:
    train_steps = train_config.num_steps

491
492
493
  if kwargs['use_bfloat16']:
    tf.compat.v2.keras.mixed_precision.experimental.set_policy('mixed_bfloat16')

494
495
496
497
  if train_config.load_all_detection_checkpoint_vars:
    raise ValueError('train_pb2.load_all_detection_checkpoint_vars '
                     'unsupported in TF2')

498
  config_util.update_fine_tune_checkpoint_type(train_config)
pkulzc's avatar
pkulzc committed
499
  fine_tune_checkpoint_type = train_config.fine_tune_checkpoint_type
500
  fine_tune_checkpoint_version = train_config.fine_tune_checkpoint_version
pkulzc's avatar
pkulzc committed
501
502
503
504
505
506
507

  # Write the as-run pipeline config to disk.
  if save_final_config:
    pipeline_config_final = create_pipeline_proto_from_configs(configs)
    config_util.save_pipeline_config(pipeline_config_final, model_dir)

  # Build the model, optimizer, and training input
508
  strategy = tf.compat.v2.distribute.get_strategy()
pkulzc's avatar
pkulzc committed
509
  with strategy.scope():
510
    detection_model = MODEL_BUILD_UTIL_MAP['detection_model_fn_base'](
pkulzc's avatar
pkulzc committed
511
512
        model_config=model_config, is_training=True)

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    def train_dataset_fn(input_context):
      """Callable to create train input."""
      # Create the inputs.
      train_input = inputs.train_input(
          train_config=train_config,
          train_input_config=train_input_config,
          model_config=model_config,
          model=detection_model,
          input_context=input_context)
      train_input = train_input.repeat()
      return train_input

    train_input = strategy.experimental_distribute_datasets_from_function(
        train_dataset_fn)


    global_step = tf.Variable(
        0, trainable=False, dtype=tf.compat.v2.dtypes.int64, name='global_step',
        aggregation=tf.compat.v2.VariableAggregation.ONLY_FIRST_REPLICA)
pkulzc's avatar
pkulzc committed
532
533
534
535
536
537
538
539
540
    optimizer, (learning_rate,) = optimizer_builder.build(
        train_config.optimizer, global_step=global_step)

    if callable(learning_rate):
      learning_rate_fn = learning_rate
    else:
      learning_rate_fn = lambda: learning_rate

  ## Train the model
541
542
  # Get the appropriate filepath (temporary or not) based on whether the worker
  # is the chief.
543
544
  summary_writer_filepath = get_filepath(strategy,
                                         os.path.join(model_dir, 'train'))
545
546
547
548
549
  if record_summaries:
    summary_writer = tf.compat.v2.summary.create_file_writer(
        summary_writer_filepath)
  else:
    summary_writer = tf2.summary.create_noop_writer()
550
551
552
553
554
555
556
557

  if use_tpu:
    num_steps_per_iteration = 100
  else:
    # TODO(b/135933080) Explore setting to 100 when GPU performance issues
    # are fixed.
    num_steps_per_iteration = 1

pkulzc's avatar
pkulzc committed
558
559
  with summary_writer.as_default():
    with strategy.scope():
560
561
562
      with tf.compat.v2.summary.record_if(
          lambda: global_step % num_steps_per_iteration == 0):
        # Load a fine-tuning checkpoint.
563
564
565
        if train_config.fine_tune_checkpoint:
          load_fine_tune_checkpoint(detection_model,
                                    train_config.fine_tune_checkpoint,
566
567
568
569
570
571
572
573
                                    fine_tune_checkpoint_type,
                                    fine_tune_checkpoint_version,
                                    train_input,
                                    unpad_groundtruth_tensors)

        ckpt = tf.compat.v2.train.Checkpoint(
            step=global_step, model=detection_model, optimizer=optimizer)

574
        manager_dir = get_filepath(strategy, model_dir)
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        if not strategy.extended.should_checkpoint:
          checkpoint_max_to_keep = 1
        manager = tf.compat.v2.train.CheckpointManager(
            ckpt, manager_dir, max_to_keep=checkpoint_max_to_keep)

        # We use the following instead of manager.latest_checkpoint because
        # manager_dir does not point to the model directory when we are running
        # in a worker.
        latest_checkpoint = tf.train.latest_checkpoint(model_dir)
        ckpt.restore(latest_checkpoint)

        def train_step_fn(features, labels):
          """Single train step."""
          loss = eager_train_step(
              detection_model,
              features,
              labels,
              unpad_groundtruth_tensors,
              optimizer,
              learning_rate=learning_rate_fn(),
              add_regularization_loss=add_regularization_loss,
              clip_gradients_value=clip_gradients_value,
              global_step=global_step,
              num_replicas=strategy.num_replicas_in_sync)
          global_step.assign_add(1)
          return loss

        def _sample_and_train(strategy, train_step_fn, data_iterator):
          features, labels = data_iterator.next()
604
605
606
607
608
609
          if hasattr(tf.distribute.Strategy, 'run'):
            per_replica_losses = strategy.run(
                train_step_fn, args=(features, labels))
          else:
            per_replica_losses = strategy.experimental_run_v2(
                train_step_fn, args=(features, labels))
610
611
612
613
614
615
616
617
618
619
620
          # TODO(anjalisridhar): explore if it is safe to remove the
          ## num_replicas scaling of the loss and switch this to a ReduceOp.Mean
          return strategy.reduce(tf.distribute.ReduceOp.SUM,
                                 per_replica_losses, axis=None)

        @tf.function
        def _dist_train_step(data_iterator):
          """A distributed train step."""

          if num_steps_per_iteration > 1:
            for _ in tf.range(num_steps_per_iteration - 1):
621
622
623
              # Following suggestion on yaqs/5402607292645376
              with tf.name_scope(''):
                _sample_and_train(strategy, train_step_fn, data_iterator)
624
625
626
627

          return _sample_and_train(strategy, train_step_fn, data_iterator)

        train_input_iter = iter(train_input)
628
629
630
631

        if int(global_step.value()) == 0:
          manager.save()

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
        checkpointed_step = int(global_step.value())
        logged_step = global_step.value()

        last_step_time = time.time()
        for _ in range(global_step.value(), train_steps,
                       num_steps_per_iteration):

          loss = _dist_train_step(train_input_iter)

          time_taken = time.time() - last_step_time
          last_step_time = time.time()

          tf.compat.v2.summary.scalar(
              'steps_per_sec', num_steps_per_iteration * 1.0 / time_taken,
              step=global_step)

          if global_step.value() - logged_step >= 100:
            tf.logging.info(
                'Step {} per-step time {:.3f}s loss={:.3f}'.format(
                    global_step.value(), time_taken / num_steps_per_iteration,
                    loss))
            logged_step = global_step.value()

          if ((int(global_step.value()) - checkpointed_step) >=
              checkpoint_every_n):
            manager.save()
            checkpointed_step = int(global_step.value())

  # Remove the checkpoint directories of the non-chief workers that
  # MultiWorkerMirroredStrategy forces us to save during sync distributed
  # training.
663
664
  clean_temporary_directories(strategy, manager_dir)
  clean_temporary_directories(strategy, summary_writer_filepath)
pkulzc's avatar
pkulzc committed
665
666
667
668
669
670
671
672
673
674
675
676
677


def eager_eval_loop(
    detection_model,
    configs,
    eval_dataset,
    use_tpu=False,
    postprocess_on_cpu=False,
    global_step=None):
  """Evaluate the model eagerly on the evaluation dataset.

  This method will compute the evaluation metrics specified in the configs on
  the entire evaluation dataset, then return the metrics. It will also log
678
  the metrics to TensorBoard.
pkulzc's avatar
pkulzc committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

  Args:
    detection_model: A DetectionModel (based on Keras) to evaluate.
    configs: Object detection configs that specify the evaluators that should
      be used, as well as whether regularization loss should be included and
      if bfloat16 should be used on TPUs.
    eval_dataset: Dataset containing evaluation data.
    use_tpu: Whether a TPU is being used to execute the model for evaluation.
    postprocess_on_cpu: Whether model postprocessing should happen on
      the CPU when using a TPU to execute the model.
    global_step: A variable containing the training step this model was trained
      to. Used for logging purposes.

  Returns:
    A dict of evaluation metrics representing the results of this evaluation.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
  eval_config = configs['eval_config']
  add_regularization_loss = train_config.add_regularization_loss

  is_training = False
  detection_model._is_training = is_training  # pylint: disable=protected-access
  tf.keras.backend.set_learning_phase(is_training)

  evaluator_options = eval_util.evaluator_options_from_eval_config(
      eval_config)

  class_agnostic_category_index = (
      label_map_util.create_class_agnostic_category_index())
  class_agnostic_evaluators = eval_util.get_evaluators(
      eval_config,
      list(class_agnostic_category_index.values()),
      evaluator_options)

  class_aware_evaluators = None
  if eval_input_config.label_map_path:
    class_aware_category_index = (
        label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path))
    class_aware_evaluators = eval_util.get_evaluators(
        eval_config,
        list(class_aware_category_index.values()),
        evaluator_options)

  evaluators = None
  loss_metrics = {}

  @tf.function
  def compute_eval_dict(features, labels):
    """Compute the evaluation result on an image."""
    # For evaling on train data, it is necessary to check whether groundtruth
    # must be unpadded.
    boxes_shape = (
        labels[fields.InputDataFields.groundtruth_boxes].get_shape().as_list())
    unpad_groundtruth_tensors = boxes_shape[1] is not None and not use_tpu
    labels = model_lib.unstack_batch(
        labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)

    losses_dict, prediction_dict = _compute_losses_and_predictions_dicts(
739
        detection_model, features, labels, add_regularization_loss)
pkulzc's avatar
pkulzc committed
740
741
742
743
744
745
746

    def postprocess_wrapper(args):
      return detection_model.postprocess(args[0], args[1])

    # TODO(kaftan): Depending on how postprocessing will work for TPUS w/
    ## TPUStrategy, may be good to move wrapping to a utility method
    if use_tpu and postprocess_on_cpu:
747
      detections = contrib_tpu.outside_compilation(
pkulzc's avatar
pkulzc committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
          postprocess_wrapper,
          (prediction_dict, features[fields.InputDataFields.true_image_shape]))
    else:
      detections = postprocess_wrapper(
          (prediction_dict, features[fields.InputDataFields.true_image_shape]))

    class_agnostic = (
        fields.DetectionResultFields.detection_classes not in detections)
    # TODO(kaftan) (or anyone): move `_prepare_groundtruth_for_eval to eval_util
    ## and call this from there.
    groundtruth = model_lib._prepare_groundtruth_for_eval(  # pylint: disable=protected-access
        detection_model, class_agnostic, eval_input_config.max_number_of_boxes)
    use_original_images = fields.InputDataFields.original_image in features
    if use_original_images:
      eval_images = features[fields.InputDataFields.original_image]
      true_image_shapes = tf.slice(
          features[fields.InputDataFields.true_image_shape], [0, 0], [-1, 3])
      original_image_spatial_shapes = features[
          fields.InputDataFields.original_image_spatial_shape]
    else:
      eval_images = features[fields.InputDataFields.image]
      true_image_shapes = None
      original_image_spatial_shapes = None

    eval_dict = eval_util.result_dict_for_batched_example(
        eval_images,
        features[inputs.HASH_KEY],
        detections,
        groundtruth,
        class_agnostic=class_agnostic,
        scale_to_absolute=True,
        original_image_spatial_shapes=original_image_spatial_shapes,
        true_image_shapes=true_image_shapes)

    return eval_dict, losses_dict, class_agnostic

784
785
786
787
788
789
  agnostic_categories = label_map_util.create_class_agnostic_category_index()
  per_class_categories = label_map_util.create_category_index_from_labelmap(
      eval_input_config.label_map_path)
  keypoint_edges = [
      (kp.start, kp.end) for kp in eval_config.keypoint_edge]

790
  for i, (features, labels) in enumerate(eval_dataset):
pkulzc's avatar
pkulzc committed
791
    eval_dict, losses_dict, class_agnostic = compute_eval_dict(features, labels)
792

793
794
795
796
797
    if class_agnostic:
      category_index = agnostic_categories
    else:
      category_index = per_class_categories

798
799
    if i % 100 == 0:
      tf.logging.info('Finished eval step %d', i)
pkulzc's avatar
pkulzc committed
800

801
    use_original_images = fields.InputDataFields.original_image in features
802
    if use_original_images and i < eval_config.num_visualizations:
803
804
805
806
807
808
809
810
811
      sbys_image_list = vutils.draw_side_by_side_evaluation_image(
          eval_dict,
          category_index=category_index,
          max_boxes_to_draw=eval_config.max_num_boxes_to_visualize,
          min_score_thresh=eval_config.min_score_threshold,
          use_normalized_coordinates=False,
          keypoint_edges=keypoint_edges or None)
      sbys_images = tf.concat(sbys_image_list, axis=0)
      tf.compat.v2.summary.image(
812
          name='eval_side_by_side_' + str(i),
813
814
          step=global_step,
          data=sbys_images,
815
816
817
818
819
820
821
822
823
824
          max_outputs=eval_config.num_visualizations)
      if eval_util.has_densepose(eval_dict):
        dp_image_list = vutils.draw_densepose_visualizations(
            eval_dict)
        dp_images = tf.concat(dp_image_list, axis=0)
        tf.compat.v2.summary.image(
            name='densepose_detections_' + str(i),
            step=global_step,
            data=dp_images,
            max_outputs=eval_config.num_visualizations)
825

pkulzc's avatar
pkulzc committed
826
827
828
829
830
831
832
833
834
835
836
837
    if evaluators is None:
      if class_agnostic:
        evaluators = class_agnostic_evaluators
      else:
        evaluators = class_aware_evaluators

    for evaluator in evaluators:
      evaluator.add_eval_dict(eval_dict)

    for loss_key, loss_tensor in iter(losses_dict.items()):
      if loss_key not in loss_metrics:
        loss_metrics[loss_key] = tf.keras.metrics.Mean()
838
839
840
841
842
      # Skip the loss with value equal or lower than 0.0 when calculating the
      # average loss since they don't usually reflect the normal loss values
      # causing spurious average loss value.
      if loss_tensor <= 0.0:
        continue
pkulzc's avatar
pkulzc committed
843
844
845
846
847
848
849
850
851
852
      loss_metrics[loss_key].update_state(loss_tensor)

  eval_metrics = {}

  for evaluator in evaluators:
    eval_metrics.update(evaluator.evaluate())
  for loss_key in loss_metrics:
    eval_metrics[loss_key] = loss_metrics[loss_key].result()

  eval_metrics = {str(k): v for k, v in eval_metrics.items()}
853
  tf.logging.info('Eval metrics at step %d', global_step)
pkulzc's avatar
pkulzc committed
854
855
  for k in eval_metrics:
    tf.compat.v2.summary.scalar(k, eval_metrics[k], step=global_step)
856
    tf.logging.info('\t+ %s: %f', k, eval_metrics[k])
pkulzc's avatar
pkulzc committed
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872

  return eval_metrics


def eval_continuously(
    pipeline_config_path,
    config_override=None,
    train_steps=None,
    sample_1_of_n_eval_examples=1,
    sample_1_of_n_eval_on_train_examples=1,
    use_tpu=False,
    override_eval_num_epochs=True,
    postprocess_on_cpu=False,
    model_dir=None,
    checkpoint_dir=None,
    wait_interval=180,
873
    timeout=3600,
Vighnesh Birodkar's avatar
Vighnesh Birodkar committed
874
    eval_index=None,
pkulzc's avatar
pkulzc committed
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
    **kwargs):
  """Run continuous evaluation of a detection model eagerly.

  This method builds the model, and continously restores it from the most
  recent training checkpoint in the checkpoint directory & evaluates it
  on the evaluation data.

  Args:
    pipeline_config_path: A path to a pipeline config file.
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    sample_1_of_n_eval_examples: Integer representing how often an eval example
      should be sampled. If 1, will sample all examples.
    sample_1_of_n_eval_on_train_examples: Similar to
      `sample_1_of_n_eval_examples`, except controls the sampling of training
      data for evaluation.
    use_tpu: Boolean, whether training and evaluation should run on TPU.
    override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for
      eval_input.
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true,
      postprocess is scheduled on the host cpu.
898
899
900
901
902
903
    model_dir: Directory to output resulting evaluation summaries to.
    checkpoint_dir: Directory that contains the training checkpoints.
    wait_interval: The mimmum number of seconds to wait before checking for a
      new checkpoint.
    timeout: The maximum number of seconds to wait for a checkpoint. Execution
      will terminate if no new checkpoints are found after these many seconds.
Vighnesh Birodkar's avatar
Vighnesh Birodkar committed
904
905
    eval_index: int, optional If give, only evaluate the dataset at the given
      index.
906

pkulzc's avatar
pkulzc committed
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
    **kwargs: Additional keyword arguments for configuration override.
  """
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']

  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
  kwargs.update({
      'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples,
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
  })
  if train_steps is not None:
    kwargs['train_steps'] = train_steps
  if override_eval_num_epochs:
    kwargs.update({'eval_num_epochs': 1})
    tf.logging.warning(
        'Forced number of epochs for all eval validations to be 1.')
  configs = merge_external_params_with_configs(
927
      configs, None, kwargs_dict=kwargs)
pkulzc's avatar
pkulzc committed
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
  model_config = configs['model']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
  eval_input_configs = configs['eval_input_configs']
  eval_on_train_input_config = copy.deepcopy(train_input_config)
  eval_on_train_input_config.sample_1_of_n_examples = (
      sample_1_of_n_eval_on_train_examples)
  if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1:
    tf.logging.warning('Expected number of evaluation epochs is 1, but '
                       'instead encountered `eval_on_train_input_config'
                       '.num_epochs` = '
                       '{}. Overwriting `num_epochs` to 1.'.format(
                           eval_on_train_input_config.num_epochs))
    eval_on_train_input_config.num_epochs = 1

943
944
945
  if kwargs['use_bfloat16']:
    tf.compat.v2.keras.mixed_precision.experimental.set_policy('mixed_bfloat16')

946
  detection_model = MODEL_BUILD_UTIL_MAP['detection_model_fn_base'](
pkulzc's avatar
pkulzc committed
947
948
949
950
951
952
953
954
955
956
957
958
      model_config=model_config, is_training=True)

  # Create the inputs.
  eval_inputs = []
  for eval_input_config in eval_input_configs:
    next_eval_input = inputs.eval_input(
        eval_config=eval_config,
        eval_input_config=eval_input_config,
        model_config=model_config,
        model=detection_model)
    eval_inputs.append((eval_input_config.name, next_eval_input))

Vighnesh Birodkar's avatar
Vighnesh Birodkar committed
959
960
961
  if eval_index is not None:
    eval_inputs = [eval_inputs[eval_index]]

pkulzc's avatar
pkulzc committed
962
963
964
  global_step = tf.compat.v2.Variable(
      0, trainable=False, dtype=tf.compat.v2.dtypes.int64)

965
966
  for latest_checkpoint in tf.train.checkpoints_iterator(
      checkpoint_dir, timeout=timeout, min_interval_secs=wait_interval):
pkulzc's avatar
pkulzc committed
967
968
    ckpt = tf.compat.v2.train.Checkpoint(
        step=global_step, model=detection_model)
969
970
971
972
973

    ckpt.restore(latest_checkpoint).expect_partial()

    for eval_name, eval_input in eval_inputs:
      summary_writer = tf.compat.v2.summary.create_file_writer(
kmindspark's avatar
kmindspark committed
974
          os.path.join(model_dir, 'eval', eval_name))
975
976
977
978
979
980
981
982
      with summary_writer.as_default():
        eager_eval_loop(
            detection_model,
            configs,
            eval_input,
            use_tpu=use_tpu,
            postprocess_on_cpu=postprocess_on_cpu,
            global_step=global_step)