learning_rate.py 4.39 KB
Newer Older
Allen Wang's avatar
Allen Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Lint as: python3
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Learning rate utilities for vision tasks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from typing import Any, List, Mapping

Hongkun Yu's avatar
Hongkun Yu committed
23
import tensorflow as tf
Allen Wang's avatar
Allen Wang committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

BASE_LEARNING_RATE = 0.1


class WarmupDecaySchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
  """A wrapper for LearningRateSchedule that includes warmup steps."""

  def __init__(
      self,
      lr_schedule: tf.keras.optimizers.schedules.LearningRateSchedule,
      warmup_steps: int):
    """Add warmup decay to a learning rate schedule.

    Args:
      lr_schedule: base learning rate scheduler
      warmup_steps: number of warmup steps

    """
    super(WarmupDecaySchedule, self).__init__()
    self._lr_schedule = lr_schedule
    self._warmup_steps = warmup_steps

  def __call__(self, step: int):
    lr = self._lr_schedule(step)
    if self._warmup_steps:
      initial_learning_rate = tf.convert_to_tensor(
          self._lr_schedule.initial_learning_rate, name="initial_learning_rate")
      dtype = initial_learning_rate.dtype
      global_step_recomp = tf.cast(step, dtype)
      warmup_steps = tf.cast(self._warmup_steps, dtype)
      warmup_lr = initial_learning_rate * global_step_recomp / warmup_steps
      lr = tf.cond(global_step_recomp < warmup_steps,
                   lambda: warmup_lr,
                   lambda: lr)
    return lr

  def get_config(self) -> Mapping[str, Any]:
    config = self._lr_schedule.get_config()
    config.update({
        "warmup_steps": self._warmup_steps,
    })
    return config


# TODO(b/149030439) - refactor this with
# tf.keras.optimizers.schedules.PiecewiseConstantDecay + WarmupDecaySchedule.
class PiecewiseConstantDecayWithWarmup(
    tf.keras.optimizers.schedules.LearningRateSchedule):
  """Piecewise constant decay with warmup schedule."""

  def __init__(self,
               batch_size: int,
               epoch_size: int,
               warmup_epochs: int,
               boundaries: List[int],
               multipliers: List[float]):
    """Piecewise constant decay with warmup.

    Args:
      batch_size: The training batch size used in the experiment.
      epoch_size: The size of an epoch, or the number of examples in an epoch.
      warmup_epochs: The number of warmup epochs to apply.
      boundaries: The list of floats with strictly increasing entries.
      multipliers: The list of multipliers/learning rates to use for the
        piecewise portion. The length must be 1 less than that of boundaries.

    """
    super(PiecewiseConstantDecayWithWarmup, self).__init__()
    if len(boundaries) != len(multipliers) - 1:
      raise ValueError("The length of boundaries must be 1 less than the "
                       "length of multipliers")

    base_lr_batch_size = 256
    steps_per_epoch = epoch_size // batch_size

    self._rescaled_lr = BASE_LEARNING_RATE * batch_size / base_lr_batch_size
    self._step_boundaries = [float(steps_per_epoch) * x for x in boundaries]
    self._lr_values = [self._rescaled_lr * m for m in multipliers]
    self._warmup_steps = warmup_epochs * steps_per_epoch

  def __call__(self, step: int):
    """Compute learning rate at given step."""
    def warmup_lr():
      return self._rescaled_lr * (
          step / tf.cast(self._warmup_steps, tf.float32))
    def piecewise_lr():
      return tf.compat.v1.train.piecewise_constant(
          tf.cast(step, tf.float32), self._step_boundaries, self._lr_values)
    return tf.cond(step < self._warmup_steps, warmup_lr, piecewise_lr)

  def get_config(self) -> Mapping[str, Any]:
    return {
        "rescaled_lr": self._rescaled_lr,
        "step_boundaries": self._step_boundaries,
        "lr_values": self._lr_values,
        "warmup_steps": self._warmup_steps,
    }