pretrained_models.md 5.63 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Pre-trained Models

We provide a large collection of baselines and checkpoints for NLP pre-trained
models.

## How to Load Pretrained Models

### How to Initialize from Checkpoint

**Note:** TF-HUB/Savedmodel is the preferred way to distribute models as it is
self-contained. Please consider using TF-HUB for finetuning tasks first.

If you use the [NLP training library](train.md),
you can specify the checkpoint path link directly when launching your job. For
example, to initialize the model from the checkpoint, you can specify
`--params_override=task.init_checkpoint=PATH_TO_INIT_CKPT` as:

```
python3 train.py \
 --params_override=task.init_checkpoint=PATH_TO_INIT_CKPT
```

### How to load TF-HUB SavedModel

Finetuning tasks such as question answering (SQuAD) and sentence
prediction (GLUE) support loading a model from TF-HUB. These built-in tasks
support a specific `task.hub_module_url` parameter. To set this parameter,
replace `--params_override=task.init_checkpoint=...` with
`--params_override=task.hub_module_url=TF_HUB_URL`, like below:

```
python3 train.py \
 --params_override=task.hub_module_url=https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/3
```

## BERT

Public BERT pre-trained models released by the BERT authors.

We released both checkpoints and tf.hub modules as the pretrained models for
fine-tuning. They are TF 2.x compatible and are converted from the checkpoints
released in TF 1.x official BERT repository
[google-research/bert](https://github.com/google-research/bert)
in order to keep consistent with BERT paper.

### Checkpoints

Model                                    | Configuration                | Training Data | Checkpoint & Vocabulary | TF-HUB SavedModels
---------------------------------------- | :--------------------------: | ------------: | ----------------------: | ------:
BERT-base uncased English                | uncased_L-12_H-768_A-12      | Wiki + Books  | [uncased_L-12_H-768_A-12](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/v3/uncased_L-12_H-768_A-12.tar.gz) | [`BERT-Base, Uncased`](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/)
BERT-base cased English                  | cased_L-12_H-768_A-12        | Wiki + Books  | [cased_L-12_H-768_A-12](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/v3/cased_L-12_H-768_A-12.tar.gz) | [`BERT-Base, Cased`](https://tfhub.dev/tensorflow/bert_en_cased_L-12_H-768_A-12/)
BERT-large uncased English               | uncased_L-24_H-1024_A-16     | Wiki + Books  | [uncased_L-24_H-1024_A-16](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/v3/uncased_L-24_H-1024_A-16.tar.gz) | [`BERT-Large, Uncased`](https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/)
BERT-large cased English                  | cased_L-24_H-1024_A-16       | Wiki + Books  | [cased_L-24_H-1024_A-16](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/v3/cased_L-24_H-1024_A-16.tar.gz) | [`BERT-Large, Cased`](https://tfhub.dev/tensorflow/bert_en_cased_L-24_H-1024_A-16/)
BERT-large, Uncased (Whole Word Masking) | wwm_uncased_L-24_H-1024_A-16 | Wiki + Books  | [wwm_uncased_L-24_H-1024_A-16](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/v3/wwm_uncased_L-24_H-1024_A-16.tar.gz) | [`BERT-Large, Uncased (Whole Word Masking)`](https://tfhub.dev/tensorflow/bert_en_wwm_uncased_L-24_H-1024_A-16/)
BERT-large, Cased (Whole Word Masking)   | wwm_cased_L-24_H-1024_A-16   | Wiki + Books  | [wwm_cased_L-24_H-1024_A-16](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/v3/wwm_cased_L-24_H-1024_A-16.tar.gz) | [`BERT-Large, Cased (Whole Word Masking)`](https://tfhub.dev/tensorflow/bert_en_wwm_cased_L-24_H-1024_A-16/)
BERT-base MultiLingual                   | multi_cased_L-12_H-768_A-12  | Wiki + Books  | [multi_cased_L-12_H-768_A-12](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/v3/multi_cased_L-12_H-768_A-12.tar.gz) | [`BERT-Base, Multilingual Cased`](https://tfhub.dev/tensorflow/bert_multi_cased_L-12_H-768_A-12/)
BERT-base Chinese                        | chinese_L-12_H-768_A-12      | Wiki + Books  | [chinese_L-12_H-768_A-12](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/v3/chinese_L-12_H-768_A-12.tar.gz) | [`BERT-Base, Chinese`](https://tfhub.dev/tensorflow/bert_zh_L-12_H-768_A-12/)

You may explore more in the TF-Hub BERT collection:
https://tfhub.dev/google/collections/bert/1

### BERT variants

We also have pretrained BERT models with variants in both network architecture
and training methodologies. These models achieve higher downstream accuracy
scores.

Model                            | Configuration            | Training Data            | TF-HUB SavedModels                                                                    | Comment
-------------------------------- | :----------------------: | -----------------------: | ------------------------------------------------------------------------------------: | ------:
BERT-base talking heads + ggelu  | uncased_L-12_H-768_A-12  | Wiki + Books   | [talkheads_ggelu_base](https://tfhub.dev/tensorflow/talkheads_ggelu_bert_en_base/1)   | BERT-base trained with [talking heads attention](https://arxiv.org/abs/2003.02436) and [gated GeLU](https://arxiv.org/abs/2002.05202).
BERT-large talking heads + ggelu | uncased_L-24_H-1024_A-16 | Wiki + Books  | [talkheads_ggelu_large](https://tfhub.dev/tensorflow/talkheads_ggelu_bert_en_large/1) | BERT-large trained with [talking heads attention](https://arxiv.org/abs/2003.02436) and [gated GeLU](https://arxiv.org/abs/2002.05202).
LAMBERT-large uncased English    | uncased_L-24_H-1024_A-16 | Wiki + Books  | [lambert](https://tfhub.dev/tensorflow/lambert_en_uncased_L-24_H-1024_A-16/1)         | BERT trained with LAMB and techniques from RoBERTa.