run_classifier.py 9.49 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT classification finetuning runner in tf2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import json
import math

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf

30
# Import BERT model libraries.
31
32
33
34
35
36
from official.bert import bert_models
from official.bert import input_pipeline
from official.bert import model_saving_utils
from official.bert import model_training_utils
from official.bert import modeling
from official.bert import optimization
37
from official.bert import tpu_lib
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

flags.DEFINE_enum(
    'mode', 'train_and_eval', ['train_and_eval', 'export_only'],
    'One of {"train_and_eval", "export_only"}. `train_and_eval`: '
    'trains the model and evaluates in the meantime. '
    '`export_only`: will take the latest checkpoint inside '
    'model_dir and export a `SavedModel`.')
flags.DEFINE_string('bert_config_file', None,
                    'Bert configuration file to define core bert layers.')
flags.DEFINE_string(
    'model_dir', None,
    ('The directory where the model weights and training/evaluation summaries '
     'are stored. If not specified, save to /tmp/bert20/.'))
flags.DEFINE_string('tpu', '', 'TPU address to connect to.')
flags.DEFINE_string('train_data_path', None,
                    'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
                    'Path to evaluation data for BERT classifier.')
flags.DEFINE_string(
    'init_checkpoint', None,
    'Initial checkpoint (usually from a pre-trained BERT model).')
flags.DEFINE_string(
    'model_export_path', None,
    'Path to the directory, where trainined model will be '
    'exported.')
flags.DEFINE_enum(
64
    'strategy_type', 'mirror', ['tpu', 'mirror'],
65
66
67
68
69
70
71
72
73
74
75
76
    'Distribution Strategy type to use for training. `tpu` uses '
    'TPUStrategy for running on TPUs, `mirror` uses GPUs with '
    'single host.')
# Model training specific flags.
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
flags.DEFINE_integer('eval_batch_size', 8, 'Batch size for evaluation.')
flags.DEFINE_integer('num_train_epochs', 3,
                     'Total number of training epochs to perform.')
77
78
79
80
81
flags.DEFINE_integer(
    'steps_per_loop', 200,
    'Number of steps per graph-mode loop. Only training step '
    'happens inside the loop. Callbacks will not be called '
    'inside.')
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
flags.DEFINE_float('learning_rate', 5e-5, 'The initial learning rate for Adam.')

FLAGS = flags.FLAGS


def get_loss_fn(num_classes, loss_scale=1.0):
  """Gets the classification loss function."""

  def classification_loss_fn(labels, logits):
    """Classification loss."""
    labels = tf.squeeze(labels)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    one_hot_labels = tf.one_hot(
        tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(
        tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)
    loss *= loss_scale
    return loss

  return classification_loss_fn


def run_customized_training(strategy,
                            bert_config,
                            input_meta_data,
                            model_dir,
                            epochs,
                            steps_per_epoch,
111
                            steps_per_loop,
112
113
114
115
                            eval_steps,
                            warmup_steps,
                            initial_lr,
                            init_checkpoint,
116
117
                            use_remote_tpu=False,
                            custom_callbacks=None):
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
  """Run BERT classifier training using low-level API."""
  max_seq_length = input_meta_data['max_seq_length']
  num_classes = input_meta_data['num_labels']

  train_input_fn = functools.partial(
      input_pipeline.create_classifier_dataset,
      FLAGS.train_data_path,
      seq_length=max_seq_length,
      batch_size=FLAGS.train_batch_size)
  eval_input_fn = functools.partial(
      input_pipeline.create_classifier_dataset,
      FLAGS.eval_data_path,
      seq_length=max_seq_length,
      batch_size=FLAGS.eval_batch_size,
      is_training=False,
      drop_remainder=False)

  def _get_classifier_model():
    classifier_model, core_model = (
        bert_models.classifier_model(bert_config, tf.float32, num_classes,
                                     max_seq_length))
    classifier_model.optimizer = optimization.create_optimizer(
        initial_lr, steps_per_epoch * epochs, warmup_steps)
    return classifier_model, core_model

  loss_fn = get_loss_fn(num_classes, loss_scale=1.0)

  # Defines evaluation metrics function, which will create metrics in the
  # correct device and strategy scope.
  def metric_fn():
    return tf.keras.metrics.SparseCategoricalAccuracy(
        'test_accuracy', dtype=tf.float32)

  return model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_classifier_model,
      loss_fn=loss_fn,
      model_dir=model_dir,
      steps_per_epoch=steps_per_epoch,
157
      steps_per_loop=steps_per_loop,
158
159
160
161
162
163
      epochs=epochs,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      eval_steps=eval_steps,
      init_checkpoint=init_checkpoint,
      metric_fn=metric_fn,
164
165
      use_remote_tpu=use_remote_tpu,
      custom_callbacks=custom_callbacks)
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213


def export_classifier(model_export_path, input_meta_data):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

  def _model_fn():
    return bert_models.classifier_model(bert_config, tf.float32,
                                        input_meta_data['num_labels'],
                                        input_meta_data['max_seq_length'])[0]

  model_saving_utils.export_bert_model(
      model_export_path, model_fn=_model_fn, checkpoint_dir=FLAGS.model_dir)


def run_bert(strategy, input_meta_data):
  """Run BERT training."""
  if FLAGS.mode == 'export_only':
    export_classifier(FLAGS.model_export_path, input_meta_data)
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)

  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
  epochs = FLAGS.num_train_epochs
  train_data_size = input_meta_data['train_data_size']
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')
  # Runs customized training loop.
  logging.info('Training using customized training loop TF 2.0 with distrubuted'
               'strategy.')
  use_remote_tpu = (FLAGS.strategy_type == 'tpu' and FLAGS.tpu)
214
  trained_model = run_customized_training(
215
216
217
218
219
220
      strategy,
      bert_config,
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
221
      FLAGS.steps_per_loop,
222
223
224
225
226
227
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
      FLAGS.init_checkpoint,
      use_remote_tpu=use_remote_tpu)

228
  if FLAGS.model_export_path:
229
230
231
    with tf.device(model_training_utils.get_primary_cpu_task(use_remote_tpu)):
      model_saving_utils.export_bert_model(
          FLAGS.model_export_path, model=trained_model)
232
233
  return trained_model

234
235
236
237

def main(_):
  # Users should always run this script under TF 2.x
  assert tf.version.VERSION.startswith('2.')
238

239
240
241
242
243
244
245
246
247
248
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

  strategy = None
  if FLAGS.strategy_type == 'mirror':
    strategy = tf.distribute.MirroredStrategy()
  elif FLAGS.strategy_type == 'tpu':
249
250
    # Initialize TPU System.
    cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
251
    strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
252
253
254
  else:
    raise ValueError('The distribution strategy type is not supported: %s' %
                     FLAGS.strategy_type)
255
256
257
258
259
260
  run_bert(strategy, input_meta_data)


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
261
  flags.mark_flag_as_required('model_dir')
262
  app.run(main)