segmentation_metrics.py 9.77 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
17
"""Metrics for segmentation."""
import tensorflow as tf

18
19
from official.vision import keras_cv

Abdullah Rashwan's avatar
Abdullah Rashwan committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

class MeanIoU(tf.keras.metrics.MeanIoU):
  """Mean IoU metric for semantic segmentation.

  This class utilizes tf.keras.metrics.MeanIoU to perform batched mean iou when
  both input images and groundtruth masks are resized to the same size
  (rescale_predictions=False). It also computes mean iou on groundtruth original
  sizes, in which case, each prediction is rescaled back to the original image
  size.
  """

  def __init__(
      self, num_classes, rescale_predictions=False, name=None, dtype=None):
    """Constructs Segmentation evaluator class.

    Args:
      num_classes: `int`, number of classes.
      rescale_predictions: `bool`, whether to scale back prediction to original
        image sizes. If True, y_true['image_info'] is used to rescale
        predictions.
      name: `str`, name of the metric instance..
      dtype: data type of the metric result.
    """
    self._rescale_predictions = rescale_predictions
    super(MeanIoU, self).__init__(
        num_classes=num_classes, name=name, dtype=dtype)

  def update_state(self, y_true, y_pred):
Fan Yang's avatar
Fan Yang committed
48
    """Updates metric state.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

    Args:
      y_true: `dict`, dictionary with the following name, and key values.
        - masks: [batch, width, height, 1], groundtruth masks.
        - valid_masks: [batch, width, height, 1], valid elements in the mask.
        - image_info: [batch, 4, 2], a tensor that holds information about
          original and preprocessed images. Each entry is in the format of
          [[original_height, original_width], [input_height, input_width],
          [y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
          desired_width] is the actual scaled image size, and [y_scale, x_scale]
          is the scaling factor, which is the ratio of scaled dimension /
          original dimension.
      y_pred: Tensor [batch, width_p, height_p, num_classes], predicated masks.
    """
    predictions = y_pred
    masks = y_true['masks']
    valid_masks = y_true['valid_masks']
    images_info = y_true['image_info']

    if isinstance(predictions, tuple) or isinstance(predictions, list):
      predictions = tf.concat(predictions, axis=0)
      masks = tf.concat(masks, axis=0)
      valid_masks = tf.concat(valid_masks, axis=0)
      images_info = tf.concat(images_info, axis=0)

    # Ignore mask elements is set to zero for argmax op.
    masks = tf.where(valid_masks, masks, tf.zeros_like(masks))

    if self._rescale_predictions:
      # This part can only run on cpu/gpu due to dynamic image resizing.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
79
80
81
82
83
      for i in range(tf.shape(predictions)[0]):
        mask = masks[i]
        valid_mask = valid_masks[i]
        predicted_mask = predictions[i]
        image_info = images_info[i]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

        rescale_size = tf.cast(
            tf.math.ceil(image_info[1, :] / image_info[2, :]), tf.int32)
        image_shape = tf.cast(image_info[0, :], tf.int32)
        offsets = tf.cast(image_info[3, :], tf.int32)

        predicted_mask = tf.image.resize(
            predicted_mask,
            rescale_size,
            method=tf.image.ResizeMethod.BILINEAR)

        predicted_mask = tf.image.crop_to_bounding_box(predicted_mask,
                                                       offsets[0], offsets[1],
                                                       image_shape[0],
                                                       image_shape[1])
        mask = tf.image.crop_to_bounding_box(mask, 0, 0, image_shape[0],
                                             image_shape[1])
        valid_mask = tf.image.crop_to_bounding_box(valid_mask, 0, 0,
                                                   image_shape[0],
                                                   image_shape[1])

        predicted_mask = tf.argmax(predicted_mask, axis=2)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
106
107
108
109
110
111
        flatten_predictions = tf.reshape(predicted_mask, shape=[1, -1])
        flatten_masks = tf.reshape(mask, shape=[1, -1])
        flatten_valid_masks = tf.reshape(valid_mask, shape=[1, -1])
        super(MeanIoU, self).update_state(
            flatten_masks, flatten_predictions,
            tf.cast(flatten_valid_masks, tf.float32))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
112
113
114
115
116
117
118
119
120
121
122

    else:
      predictions = tf.image.resize(
          predictions,
          tf.shape(masks)[1:3],
          method=tf.image.ResizeMethod.BILINEAR)
      predictions = tf.argmax(predictions, axis=3)
      flatten_predictions = tf.reshape(predictions, shape=[-1])
      flatten_masks = tf.reshape(masks, shape=[-1])
      flatten_valid_masks = tf.reshape(valid_masks, shape=[-1])

Abdullah Rashwan's avatar
Abdullah Rashwan committed
123
124
125
      super(MeanIoU, self).update_state(
          flatten_masks, flatten_predictions,
          tf.cast(flatten_valid_masks, tf.float32))
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185


class PerClassIoU(keras_cv.metrics.PerClassIoU):
  """Per Class IoU metric for semantic segmentation.

  This class utilizes keras_cv.metrics.PerClassIoU to perform batched per class
  iou when both input images and groundtruth masks are resized to the same size
  (rescale_predictions=False). It also computes per class iou on groundtruth
  original sizes, in which case, each prediction is rescaled back to the
  original image size.
  """

  def __init__(
      self, num_classes, rescale_predictions=False, name=None, dtype=None):
    """Constructs Segmentation evaluator class.

    Args:
      num_classes: `int`, number of classes.
      rescale_predictions: `bool`, whether to scale back prediction to original
        image sizes. If True, y_true['image_info'] is used to rescale
        predictions.
      name: `str`, name of the metric instance..
      dtype: data type of the metric result.
    """
    self._rescale_predictions = rescale_predictions
    super(PerClassIoU, self).__init__(
        num_classes=num_classes, name=name, dtype=dtype)

  def update_state(self, y_true, y_pred):
    """Updates metric state.

    Args:
      y_true: `dict`, dictionary with the following name, and key values.
        - masks: [batch, width, height, 1], groundtruth masks.
        - valid_masks: [batch, width, height, 1], valid elements in the mask.
        - image_info: [batch, 4, 2], a tensor that holds information about
          original and preprocessed images. Each entry is in the format of
          [[original_height, original_width], [input_height, input_width],
          [y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
          desired_width] is the actual scaled image size, and [y_scale, x_scale]
          is the scaling factor, which is the ratio of scaled dimension /
          original dimension.
      y_pred: Tensor [batch, width_p, height_p, num_classes], predicated masks.
    """
    predictions = y_pred
    masks = y_true['masks']
    valid_masks = y_true['valid_masks']
    images_info = y_true['image_info']

    if isinstance(predictions, tuple) or isinstance(predictions, list):
      predictions = tf.concat(predictions, axis=0)
      masks = tf.concat(masks, axis=0)
      valid_masks = tf.concat(valid_masks, axis=0)
      images_info = tf.concat(images_info, axis=0)

    # Ignore mask elements is set to zero for argmax op.
    masks = tf.where(valid_masks, masks, tf.zeros_like(masks))

    if self._rescale_predictions:
      # This part can only run on cpu/gpu due to dynamic image resizing.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
186
187
188
189
190
      for i in range(tf.shape(predictions)[0]):
        mask = masks[i]
        valid_mask = valid_masks[i]
        predicted_mask = predictions[i]
        image_info = images_info[i]
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

        rescale_size = tf.cast(
            tf.math.ceil(image_info[1, :] / image_info[2, :]), tf.int32)
        image_shape = tf.cast(image_info[0, :], tf.int32)
        offsets = tf.cast(image_info[3, :], tf.int32)

        predicted_mask = tf.image.resize(
            predicted_mask,
            rescale_size,
            method=tf.image.ResizeMethod.BILINEAR)

        predicted_mask = tf.image.crop_to_bounding_box(predicted_mask,
                                                       offsets[0], offsets[1],
                                                       image_shape[0],
                                                       image_shape[1])
        mask = tf.image.crop_to_bounding_box(mask, 0, 0, image_shape[0],
                                             image_shape[1])
        valid_mask = tf.image.crop_to_bounding_box(valid_mask, 0, 0,
                                                   image_shape[0],
                                                   image_shape[1])

        predicted_mask = tf.argmax(predicted_mask, axis=2)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
213
214
215
216
217
218
        flatten_predictions = tf.reshape(predicted_mask, shape=[1, -1])
        flatten_masks = tf.reshape(mask, shape=[1, -1])
        flatten_valid_masks = tf.reshape(valid_mask, shape=[1, -1])
        super(PerClassIoU, self).update_state(
            flatten_masks, flatten_predictions,
            tf.cast(flatten_valid_masks, tf.float32))
219
220
221
222
223
224
225
226
227
228
229

    else:
      predictions = tf.image.resize(
          predictions,
          tf.shape(masks)[1:3],
          method=tf.image.ResizeMethod.BILINEAR)
      predictions = tf.argmax(predictions, axis=3)
      flatten_predictions = tf.reshape(predictions, shape=[-1])
      flatten_masks = tf.reshape(masks, shape=[-1])
      flatten_valid_masks = tf.reshape(valid_masks, shape=[-1])

Abdullah Rashwan's avatar
Abdullah Rashwan committed
230
231
232
      super(PerClassIoU, self).update_state(
          flatten_masks, flatten_predictions,
          tf.cast(flatten_valid_masks, tf.float32))