"megatron/training/tokenizer/tokenizer.py" did not exist on "189e72a72ba4a57b653979d7698a8d130a5cce60"
ctl_imagenet_main.py 10.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the ImageNet dataset using custom training loops."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app as absl_app
from absl import flags
from absl import logging
import tensorflow as tf

26
from official.resnet.ctl import ctl_common
Hongkun Yu's avatar
Hongkun Yu committed
27
28
29
from official.vision.image_classification import imagenet_preprocessing
from official.vision.image_classification import common
from official.vision.image_classification import resnet_model
30
31
32
33
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
34
from official.utils.misc import model_helpers
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


def build_stats(train_result, eval_result, time_callback):
  """Normalizes and returns dictionary of stats.

  Args:
    train_result: The final loss at training time.
    eval_result: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
    time_callback: Time tracking callback instance.

  Returns:
    Dictionary of normalized results.
  """
  stats = {}

  if eval_result:
52
53
    stats['eval_loss'] = eval_result[0]
    stats['eval_acc'] = eval_result[1]
54
55
56
57
58
59

    stats['train_loss'] = train_result[0]
    stats['train_acc'] = train_result[1]

  if time_callback:
    timestamp_log = time_callback.timestamp_log
60
61
    stats['step_timestamp_log'] = timestamp_log
    stats['train_finish_time'] = time_callback.train_finish_time
62
    if len(timestamp_log) > 1:
63
      stats['avg_exp_per_second'] = (
64
65
66
67
68
69
70
71
72
73
74
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log) - 1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))

  return stats


def get_input_dataset(flags_obj, strategy):
  """Returns the test and train input datasets."""
  dtype = flags_core.get_tf_dtype(flags_obj)
  if flags_obj.use_synthetic_data:
Hongkun Yu's avatar
Hongkun Yu committed
75
    input_fn = common.get_synth_input_fn(
76
77
78
79
        height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        num_channels=imagenet_preprocessing.NUM_CHANNELS,
        num_classes=imagenet_preprocessing.NUM_CLASSES,
80
81
82
        dtype=dtype,
        drop_remainder=True)
  else:
83
    input_fn = imagenet_preprocessing.input_fn
84
85
86
87
88

  train_ds = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
      batch_size=flags_obj.batch_size,
89
      parse_record_fn=imagenet_preprocessing.parse_record,
90
91
92
93
94
      datasets_num_private_threads=flags_obj.datasets_num_private_threads,
      dtype=dtype)

  if strategy:
    train_ds = strategy.experimental_distribute_dataset(train_ds)
95

96
97
98
99
100
101
  test_ds = None
  if not flags_obj.skip_eval:
    test_ds = input_fn(
        is_training=False,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
102
        parse_record_fn=imagenet_preprocessing.parse_record,
103
104
105
106
107
108
109
110
111
112
        dtype=dtype)

    if strategy:
      test_ds = strategy.experimental_distribute_dataset(test_ds)

  return train_ds, test_ds


def get_num_train_iterations(flags_obj):
  """Returns the number of training stesps, train and test epochs."""
113
114
  train_steps = (
      imagenet_preprocessing.NUM_IMAGES['train'] // flags_obj.batch_size)
115
116
117
118
119
120
  train_epochs = flags_obj.train_epochs

  if flags_obj.train_steps:
    train_steps = min(flags_obj.train_steps, train_steps)
    train_epochs = 1

121
122
  eval_steps = (
      imagenet_preprocessing.NUM_IMAGES['validation'] // flags_obj.batch_size)
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

  return train_steps, train_epochs, eval_steps


def run(flags_obj):
  """Run ResNet ImageNet training and eval loop using custom training loops.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
Zongwei Zhou's avatar
Zongwei Zhou committed
139
140
141
142
  keras_utils.set_session_config(
      enable_eager=flags_obj.enable_eager,
      enable_xla=flags_obj.enable_xla)

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
  # TODO(anj-s): Set data_format without using Keras.
  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)

  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_obj.num_gpus,
      num_workers=distribution_utils.configure_cluster(),
      all_reduce_alg=flags_obj.all_reduce_alg,
      num_packs=flags_obj.num_packs)

  train_ds, test_ds = get_input_dataset(flags_obj, strategy)
  train_steps, train_epochs, eval_steps = get_num_train_iterations(flags_obj)

  time_callback = keras_utils.TimeHistory(flags_obj.batch_size,
                                          flags_obj.log_steps)

  strategy_scope = distribution_utils.get_strategy_scope(strategy)
  with strategy_scope:
165
166
    model = resnet_model.resnet50(
        num_classes=imagenet_preprocessing.NUM_CLASSES,
167
        batch_size=flags_obj.batch_size,
Zongwei Zhou's avatar
Zongwei Zhou committed
168
        use_l2_regularizer=not flags_obj.single_l2_loss_op)
169
170

    optimizer = tf.keras.optimizers.SGD(
Hongkun Yu's avatar
Hongkun Yu committed
171
        learning_rate=common.BASE_LEARNING_RATE, momentum=0.9,
172
173
        nesterov=True)

174
175
176
    if flags_obj.fp16_implementation == "graph_rewrite":
      if not flags_obj.use_tf_function:
        raise ValueError("--fp16_implementation=graph_rewrite requires "
Kaixi Hou's avatar
Kaixi Hou committed
177
                         "--use_tf_function to be true")
178
      loss_scale = flags_core.get_loss_scale(flags_obj, default_for_fp16=128)
Kaixi Hou's avatar
Kaixi Hou committed
179
180
      optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
                      optimizer, loss_scale)
181

182
183
184
185
186
187
    training_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
        'training_accuracy', dtype=tf.float32)
    test_loss = tf.keras.metrics.Mean('test_loss', dtype=tf.float32)
    test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
        'test_accuracy', dtype=tf.float32)

Zongwei Zhou's avatar
Zongwei Zhou committed
188
189
    trainable_variables = model.trainable_variables

190
191
192
193
194
195
196
197
198
199
    def train_step(train_ds_inputs):
      """Training StepFn."""
      def step_fn(inputs):
        """Per-Replica StepFn."""
        images, labels = inputs
        with tf.GradientTape() as tape:
          logits = model(images, training=True)

          prediction_loss = tf.keras.losses.sparse_categorical_crossentropy(
              labels, logits)
Zongwei Zhou's avatar
Zongwei Zhou committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
          loss = tf.reduce_sum(prediction_loss) * (1.0/ flags_obj.batch_size)
          num_replicas = tf.distribute.get_strategy().num_replicas_in_sync

          if flags_obj.single_l2_loss_op:
            filtered_variables = [
                tf.reshape(v, (-1,))
                for v in trainable_variables
                if 'bn' not in v.name
            ]
            l2_loss = resnet_model.L2_WEIGHT_DECAY * 2 * tf.nn.l2_loss(
                tf.concat(filtered_variables, axis=0))
            loss += (l2_loss / num_replicas)
          else:
            loss += (tf.reduce_sum(model.losses) / num_replicas)
214
215

          # Scale the loss
Kaixi Hou's avatar
Kaixi Hou committed
216
217
          if flags_obj.dtype == "fp16":
            loss = optimizer.get_scaled_loss(loss)
218

Zongwei Zhou's avatar
Zongwei Zhou committed
219
        grads = tape.gradient(loss, trainable_variables)
220
221

        # Unscale the grads
Kaixi Hou's avatar
Kaixi Hou committed
222
223
        if flags_obj.dtype == "fp16":
          grads = optimizer.get_unscaled_gradients(grads)
224

Zongwei Zhou's avatar
Zongwei Zhou committed
225
        optimizer.apply_gradients(zip(grads, trainable_variables))
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

        training_accuracy.update_state(labels, logits)
        return loss

      if strategy:
        per_replica_losses = strategy.experimental_run_v2(
            step_fn, args=(train_ds_inputs,))
        return strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses,
                               axis=None)
      else:
        return step_fn(train_ds_inputs)

    def test_step(test_ds_inputs):
      """Evaluation StepFn."""
      def step_fn(inputs):
        images, labels = inputs
        logits = model(images, training=False)
        loss = tf.keras.losses.sparse_categorical_crossentropy(labels,
                                                               logits)
        loss = tf.reduce_sum(loss) * (1.0/ flags_obj.batch_size)
        test_loss.update_state(loss)
        test_accuracy.update_state(labels, logits)

      if strategy:
        strategy.experimental_run_v2(step_fn, args=(test_ds_inputs,))
      else:
        step_fn(test_ds_inputs)

    if flags_obj.use_tf_function:
      train_step = tf.function(train_step)
      test_step = tf.function(test_step)

    time_callback.on_train_begin()
    for epoch in range(train_epochs):

      train_iter = iter(train_ds)
      total_loss = 0.0
      training_accuracy.reset_states()

      for step in range(train_steps):
Hongkun Yu's avatar
Hongkun Yu committed
266
        optimizer.lr = common.learning_rate_schedule(
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
            epoch, step, train_steps, flags_obj.batch_size)

        time_callback.on_batch_begin(step+epoch*train_steps)
        total_loss += train_step(next(train_iter))
        time_callback.on_batch_end(step+epoch*train_steps)

      train_loss = total_loss / train_steps
      logging.info('Training loss: %s, accuracy: %s%% at epoch: %d',
                   train_loss.numpy(),
                   training_accuracy.result().numpy(),
                   epoch)

      if (not flags_obj.skip_eval and
          (epoch + 1) % flags_obj.epochs_between_evals == 0):
        test_loss.reset_states()
        test_accuracy.reset_states()

        test_iter = iter(test_ds)
        for _ in range(eval_steps):
          test_step(next(test_iter))

        logging.info('Test loss: %s, accuracy: %s%% at epoch: %d',
                     test_loss.result().numpy(),
                     test_accuracy.result().numpy(),
                     epoch)

    time_callback.on_train_end()

    eval_result = None
    train_result = None
    if not flags_obj.skip_eval:
      eval_result = [test_loss.result().numpy(),
                     test_accuracy.result().numpy()]
      train_result = [train_loss.numpy(),
                      training_accuracy.result().numpy()]

    stats = build_stats(train_result, eval_result, time_callback)
    return stats


def main(_):
  model_helpers.apply_clean(flags.FLAGS)
  with logger.benchmark_context(flags.FLAGS):
    return run(flags.FLAGS)


if __name__ == '__main__':
  logging.set_verbosity(logging.INFO)
Hongkun Yu's avatar
Hongkun Yu committed
315
  common.define_keras_flags()
316
  ctl_common.define_ctl_flags()
317
  flags.adopt_module_key_flags(ctl_common)
318
  absl_app.run(main)