ctl_imagenet_benchmark.py 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes CTL benchmarks and accuracy tests."""
from __future__ import print_function

import os
import time

# pylint: disable=g-bad-import-order
from absl import flags
import tensorflow as tf

Hongkun Yu's avatar
Hongkun Yu committed
25
from official.vision.image_classification import common
26
27
28
from official.resnet.ctl import ctl_imagenet_main
from official.resnet.ctl import ctl_common
from official.utils.testing.perfzero_benchmark import PerfZeroBenchmark
29
from official.utils.flags import core as flags_core
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99


MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77

FLAGS = flags.FLAGS


class CtlBenchmark(PerfZeroBenchmark):
  """Base benchmark class with methods to simplify testing."""

  def __init__(self, output_dir=None, default_flags=None, flag_methods=None):
    self.output_dir = output_dir
    self.default_flags = default_flags or {}
    self.flag_methods = flag_methods or {}
    super(CtlBenchmark, self).__init__(
        output_dir=self.output_dir,
        default_flags=self.default_flags,
        flag_methods=self.flag_methods)

  def _report_benchmark(self,
                        stats,
                        wall_time_sec,
                        top_1_max=None,
                        top_1_min=None,
                        total_batch_size=None,
                        log_steps=None,
                        warmup=1):
    """Report benchmark results by writing to local protobuf file.

    Args:
      stats: dict returned from keras models with known entries.
      wall_time_sec: the during of the benchmark execution in seconds
      top_1_max: highest passing level for top_1 accuracy.
      top_1_min: lowest passing level for top_1 accuracy.
      total_batch_size: Global batch-size.
      log_steps: How often the log was created for stats['step_timestamp_log'].
      warmup: number of entries in stats['step_timestamp_log'] to ignore.
    """

    metrics = []
    if 'eval_acc' in stats:
      metrics.append({'name': 'accuracy_top_1',
                      'value': stats['eval_acc'],
                      'min_value': top_1_min,
                      'max_value': top_1_max})
      metrics.append({'name': 'eval_loss',
                      'value': stats['eval_loss']})

      metrics.append({'name': 'top_1_train_accuracy',
                      'value': stats['train_acc']})
      metrics.append({'name': 'train_loss',
                      'value': stats['train_loss']})

    if (warmup and 'step_timestamp_log' in stats and
        len(stats['step_timestamp_log']) > warmup):
      # first entry in the time_log is start of step 1. The rest of the
      # entries are the end of each step recorded
      time_log = stats['step_timestamp_log']
      elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
      num_examples = (
          total_batch_size * log_steps * (len(time_log) - warmup - 1))
      examples_per_sec = num_examples / elapsed
      metrics.append({'name': 'exp_per_second',
                      'value': examples_per_sec})

    if 'avg_exp_per_second' in stats:
      metrics.append({'name': 'avg_exp_per_second',
                      'value': stats['avg_exp_per_second']})

100
101
102
    flags_str = flags_core.get_nondefault_flags_as_str()
    self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics,
                          extras={'flags': flags_str})
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120


class Resnet50CtlAccuracy(CtlBenchmark):
  """Benchmark accuracy tests for ResNet50 in CTL."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    flag_methods = [
        ctl_common.define_ctl_flags,
Hongkun Yu's avatar
Hongkun Yu committed
121
        common.define_keras_flags
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    ]

    self.data_dir = os.path.join(root_data_dir, 'imagenet')
    super(Resnet50CtlAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
    self._run_and_report_benchmark()

142
  def benchmark_8_gpu_amp(self):
Kaixi Hou's avatar
Kaixi Hou committed
143
    """Test Keras model with eager, 8 GPUs with automatic mixed precision."""
144
145
146
147
148
149
150
151
152
153
154
155
156
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
    self._run_and_report_benchmark()

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
    stats = ctl_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50CtlAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


class Resnet50CtlBenchmarkBase(CtlBenchmark):
  """Resnet50 benchmarks."""

  def __init__(self, output_dir=None, default_flags=None):
    flag_methods = [
        ctl_common.define_ctl_flags,
Hongkun Yu's avatar
Hongkun Yu committed
180
        common.define_keras_flags
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    ]

    super(Resnet50CtlBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
    stats = ctl_imagenet_main.run(FLAGS)
    wall_time_sec = time.time() - start_time_sec

    # Number of logged step time entries that are excluded in performance
    # report. We keep results from last 100 batches in this case.
    warmup = (FLAGS.train_steps - 100) // FLAGS.log_steps

    super(Resnet50CtlBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps,
        warmup=warmup)

  def benchmark_1_gpu_no_dist_strat(self):
    """Test Keras model with 1 GPU, no distribution strategy."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_1_gpu(self):
    """Test Keras model with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
    FLAGS.batch_size = 128
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
    FLAGS.batch_size = 128
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

249
250
251
252
253
254
255
256
257
  def benchmark_1_gpu_eager(self):
    """Test Keras model with 1 GPU in pure eager mode."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_eager')
    FLAGS.batch_size = 64
    FLAGS.use_tf_function = False
258
    FLAGS.single_l2_loss_op = True
259
260
    self._run_and_report_benchmark()

261
262
263
264
265
266
267
268
269
270
  def benchmark_8_gpu(self):
    """Test Keras model with 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    self._run_and_report_benchmark()

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
  def benchmark_8_gpu_amp(self):
    """Test Keras model with 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    self._run_and_report_benchmark()

  def benchmark_xla_8_gpu_amp(self):
    """Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
  def fill_report_object(self, stats):
    super(Resnet50CtlBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)


class Resnet50CtlBenchmarkSynth(Resnet50CtlBenchmarkBase):
  """Resnet50 synthetic benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50CtlBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


class Resnet50CtlBenchmarkReal(Resnet50CtlBenchmarkBase):
  """Resnet50 real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50CtlBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)

if __name__ == '__main__':
  tf.test.main()