run_squad.py 14.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Run BERT on SQuAD 1.1 and SQuAD 2.0 in tf2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import json
import os

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf

30
31
32
33
34
35
36
37
38
39
# pylint: disable=unused-import,g-import-not-at-top,redefined-outer-name,reimported
from official.modeling import model_training_utils
from official.nlp import bert_modeling as modeling
from official.nlp import bert_models
from official.nlp import optimization
from official.nlp.bert import common_flags
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
from official.nlp.bert import squad_lib
from official.nlp.bert import tokenization
40
from official.utils.misc import keras_utils
41
from official.utils.misc import tpu_lib
42

Hongkun Yu's avatar
Hongkun Yu committed
43
flags.DEFINE_enum(
Hongkun Yu's avatar
Hongkun Yu committed
44
45
46
47
48
    'mode', 'train_and_predict',
    ['train_and_predict', 'train', 'predict', 'export_only'],
    'One of {"train_and_predict", "train", "predict", "export_only"}. '
    '`train_and_predict`: both train and predict to a json file. '
    '`train`: only trains the model. '
Hongkun Yu's avatar
Hongkun Yu committed
49
50
51
    '`predict`: predict answers from the squad json file. '
    '`export_only`: will take the latest checkpoint inside '
    'model_dir and export a `SavedModel`.')
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
flags.DEFINE_string('train_data_path', '',
                    'Training data path with train tfrecords.')
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
# Model training specific flags.
flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.')
# Predict processing related.
flags.DEFINE_string('predict_file', None,
                    'Prediction data path with train tfrecords.')
flags.DEFINE_string('vocab_file', None,
                    'The vocabulary file that the BERT model was trained on.')
flags.DEFINE_bool(
    'do_lower_case', True,
    'Whether to lower case the input text. Should be True for uncased '
    'models and False for cased models.')
flags.DEFINE_bool(
    'verbose_logging', False,
    'If true, all of the warnings related to data processing will be printed. '
    'A number of warnings are expected for a normal SQuAD evaluation.')
flags.DEFINE_integer('predict_batch_size', 8,
                     'Total batch size for prediction.')
flags.DEFINE_integer(
    'n_best_size', 20,
    'The total number of n-best predictions to generate in the '
    'nbest_predictions.json output file.')
flags.DEFINE_integer(
    'max_answer_length', 30,
    'The maximum length of an answer that can be generated. This is needed '
    'because the start and end predictions are not conditioned on one another.')

84
85
common_flags.define_common_bert_flags()

86
87
88
89
90
91
92
FLAGS = flags.FLAGS


def squad_loss_fn(start_positions,
                  end_positions,
                  start_logits,
                  end_logits,
93
                  loss_factor=1.0):
94
95
96
97
98
99
100
  """Returns sparse categorical crossentropy for start/end logits."""
  start_loss = tf.keras.backend.sparse_categorical_crossentropy(
      start_positions, start_logits, from_logits=True)
  end_loss = tf.keras.backend.sparse_categorical_crossentropy(
      end_positions, end_logits, from_logits=True)

  total_loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
101
  total_loss *= loss_factor
102
103
104
  return total_loss


105
def get_loss_fn(loss_factor=1.0):
106
107
108
109
110
111
112
113
114
115
116
  """Gets a loss function for squad task."""

  def _loss_fn(labels, model_outputs):
    start_positions = labels['start_positions']
    end_positions = labels['end_positions']
    _, start_logits, end_logits = model_outputs
    return squad_loss_fn(
        start_positions,
        end_positions,
        start_logits,
        end_logits,
117
        loss_factor=loss_factor)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

  return _loss_fn


def get_raw_results(predictions):
  """Converts multi-replica predictions to RawResult."""
  for unique_ids, start_logits, end_logits in zip(predictions['unique_ids'],
                                                  predictions['start_logits'],
                                                  predictions['end_logits']):
    for values in zip(unique_ids.numpy(), start_logits.numpy(),
                      end_logits.numpy()):
      yield squad_lib.RawResult(
          unique_id=values[0],
          start_logits=values[1].tolist(),
          end_logits=values[2].tolist())


def predict_squad_customized(strategy, input_meta_data, bert_config,
                             predict_tfrecord_path, num_steps):
  """Make predictions using a Bert-based squad model."""
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
  predict_dataset = input_pipeline.create_squad_dataset(
      predict_tfrecord_path,
      input_meta_data['max_seq_length'],
      FLAGS.predict_batch_size,
      is_training=False)
  predict_iterator = iter(
      strategy.experimental_distribute_dataset(predict_dataset))

  with strategy.scope():
    # Prediction always uses float32, even if training uses mixed precision.
    tf.keras.mixed_precision.experimental.set_policy('float32')
    squad_model, _ = bert_models.squad_model(
        bert_config, input_meta_data['max_seq_length'], float_type=tf.float32)

  checkpoint_path = tf.train.latest_checkpoint(FLAGS.model_dir)
  logging.info('Restoring checkpoints from %s', checkpoint_path)
  checkpoint = tf.train.Checkpoint(model=squad_model)
  checkpoint.restore(checkpoint_path).expect_partial()

  @tf.function
  def predict_step(iterator):
    """Predicts on distributed devices."""

    def _replicated_step(inputs):
      """Replicated prediction calculation."""
      x, _ = inputs
      unique_ids, start_logits, end_logits = squad_model(x, training=False)
      return dict(
          unique_ids=unique_ids,
          start_logits=start_logits,
          end_logits=end_logits)

    outputs = strategy.experimental_run_v2(
        _replicated_step, args=(next(iterator),))
    return tf.nest.map_structure(strategy.experimental_local_results, outputs)

  all_results = []
  for _ in range(num_steps):
    predictions = predict_step(predict_iterator)
    for result in get_raw_results(predictions):
      all_results.append(result)
    if len(all_results) % 100 == 0:
      logging.info('Made predictions for %d records.', len(all_results))
  return all_results
182
183


184
185
186
187
def train_squad(strategy,
                input_meta_data,
                custom_callbacks=None,
                run_eagerly=False):
188
  """Run bert squad training."""
189
190
191
  if strategy:
    logging.info('Training using customized training loop with distribution'
                 ' strategy.')
192
193
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)
194

195
196
  use_float16 = common_flags.use_float16()
  if use_float16:
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
197
    policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16')
198
199
    tf.keras.mixed_precision.experimental.set_policy(policy)

200
201
202
203
204
205
206
207
208
209
210
211
212
213
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
  epochs = FLAGS.num_train_epochs
  num_train_examples = input_meta_data['train_data_size']
  max_seq_length = input_meta_data['max_seq_length']
  steps_per_epoch = int(num_train_examples / FLAGS.train_batch_size)
  warmup_steps = int(epochs * num_train_examples * 0.1 / FLAGS.train_batch_size)
  train_input_fn = functools.partial(
      input_pipeline.create_squad_dataset,
      FLAGS.train_data_path,
      max_seq_length,
      FLAGS.train_batch_size,
      is_training=True)

  def _get_squad_model():
214
    """Get Squad model and optimizer."""
215
    squad_model, core_model = bert_models.squad_model(
216
217
        bert_config,
        max_seq_length,
Hongkun Yu's avatar
Hongkun Yu committed
218
219
        float_type=tf.float16 if use_float16 else tf.float32,
        hub_module_url=FLAGS.hub_module_url)
220
221
    squad_model.optimizer = optimization.create_optimizer(
        FLAGS.learning_rate, steps_per_epoch * epochs, warmup_steps)
222
    if use_float16:
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
223
224
225
      # Wraps optimizer with a LossScaleOptimizer. This is done automatically
      # in compile() with the "mixed_float16" policy, but since we do not call
      # compile(), we must wrap the optimizer manually.
226
227
228
      squad_model.optimizer = (
          tf.keras.mixed_precision.experimental.LossScaleOptimizer(
              squad_model.optimizer, loss_scale=common_flags.get_loss_scale()))
229
230
231
232
233
234
235
    if FLAGS.fp16_implementation == 'graph_rewrite':
      # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
      # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
      # which will ensure tf.compat.v2.keras.mixed_precision and
      # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
      # up.
      squad_model.optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
236
          squad_model.optimizer)
237
238
239
240
241
242
    return squad_model, core_model

  # The original BERT model does not scale the loss by
  # 1/num_replicas_in_sync. It could be an accident. So, in order to use
  # the same hyper parameter, we do the same thing here by keeping each
  # replica loss as it is.
243
244
245
  loss_fn = get_loss_fn(
      loss_factor=1.0 /
      strategy.num_replicas_in_sync if FLAGS.scale_loss else 1.0)
246
247
248
249
250
251
252

  model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_squad_model,
      loss_fn=loss_fn,
      model_dir=FLAGS.model_dir,
      steps_per_epoch=steps_per_epoch,
253
      steps_per_loop=FLAGS.steps_per_loop,
254
255
256
      epochs=epochs,
      train_input_fn=train_input_fn,
      init_checkpoint=FLAGS.init_checkpoint,
257
      run_eagerly=run_eagerly,
davidmochen's avatar
davidmochen committed
258
      custom_callbacks=custom_callbacks)
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327


def predict_squad(strategy, input_meta_data):
  """Makes predictions for a squad dataset."""
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
  doc_stride = input_meta_data['doc_stride']
  max_query_length = input_meta_data['max_query_length']
  # Whether data should be in Ver 2.0 format.
  version_2_with_negative = input_meta_data.get('version_2_with_negative',
                                                False)
  eval_examples = squad_lib.read_squad_examples(
      input_file=FLAGS.predict_file,
      is_training=False,
      version_2_with_negative=version_2_with_negative)

  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

  eval_writer = squad_lib.FeatureWriter(
      filename=os.path.join(FLAGS.model_dir, 'eval.tf_record'),
      is_training=False)
  eval_features = []

  def _append_feature(feature, is_padding):
    if not is_padding:
      eval_features.append(feature)
    eval_writer.process_feature(feature)

  # TPU requires a fixed batch size for all batches, therefore the number
  # of examples must be a multiple of the batch size, or else examples
  # will get dropped. So we pad with fake examples which are ignored
  # later on.
  dataset_size = squad_lib.convert_examples_to_features(
      examples=eval_examples,
      tokenizer=tokenizer,
      max_seq_length=input_meta_data['max_seq_length'],
      doc_stride=doc_stride,
      max_query_length=max_query_length,
      is_training=False,
      output_fn=_append_feature,
      batch_size=FLAGS.predict_batch_size)
  eval_writer.close()

  logging.info('***** Running predictions *****')
  logging.info('  Num orig examples = %d', len(eval_examples))
  logging.info('  Num split examples = %d', len(eval_features))
  logging.info('  Batch size = %d', FLAGS.predict_batch_size)

  num_steps = int(dataset_size / FLAGS.predict_batch_size)
  all_results = predict_squad_customized(strategy, input_meta_data, bert_config,
                                         eval_writer.filename, num_steps)

  output_prediction_file = os.path.join(FLAGS.model_dir, 'predictions.json')
  output_nbest_file = os.path.join(FLAGS.model_dir, 'nbest_predictions.json')
  output_null_log_odds_file = os.path.join(FLAGS.model_dir, 'null_odds.json')

  squad_lib.write_predictions(
      eval_examples,
      eval_features,
      all_results,
      FLAGS.n_best_size,
      FLAGS.max_answer_length,
      FLAGS.do_lower_case,
      output_prediction_file,
      output_nbest_file,
      output_null_log_odds_file,
      verbose=FLAGS.verbose_logging)


Hongkun Yu's avatar
Hongkun Yu committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
def export_squad(model_export_path, input_meta_data):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

  squad_model, _ = bert_models.squad_model(
      bert_config, input_meta_data['max_seq_length'], float_type=tf.float32)
  model_saving_utils.export_bert_model(
      model_export_path, model=squad_model, checkpoint_dir=FLAGS.model_dir)


348
349
350
def main(_):
  # Users should always run this script under TF 2.x
  assert tf.version.VERSION.startswith('2.')
351

352
353
354
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

Hongkun Yu's avatar
Hongkun Yu committed
355
356
357
358
  if FLAGS.mode == 'export_only':
    export_squad(FLAGS.model_export_path, input_meta_data)
    return

359
  strategy = None
360
361
  if FLAGS.strategy_type == 'mirror':
    strategy = tf.distribute.MirroredStrategy()
362
363
  elif FLAGS.strategy_type == 'multi_worker_mirror':
    strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
364
365
  elif FLAGS.strategy_type == 'tpu':
    cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
366
    strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
367
368
369
  else:
    raise ValueError('The distribution strategy type is not supported: %s' %
                     FLAGS.strategy_type)
Hongkun Yu's avatar
Hongkun Yu committed
370
  if FLAGS.mode in ('train', 'train_and_predict'):
371
    train_squad(strategy, input_meta_data)
Hongkun Yu's avatar
Hongkun Yu committed
372
  if FLAGS.mode in ('predict', 'train_and_predict'):
373
374
375
376
377
378
379
    predict_squad(strategy, input_meta_data)


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('model_dir')
  app.run(main)