hyperparams_builder.py 12.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Builder function to construct tf-slim arg_scope for convolution, fc ops."""
import tensorflow as tf

from object_detection.protos import hyperparams_pb2
20
from object_detection.utils import context_manager
21
22
23
24

slim = tf.contrib.slim


25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
class KerasLayerHyperparams(object):
  """
  A hyperparameter configuration object for Keras layers used in
  Object Detection models.
  """

  def __init__(self, hyperparams_config):
    """Builds keras hyperparameter config for layers based on the proto config.

    It automatically converts from Slim layer hyperparameter configs to
    Keras layer hyperparameters. Namely, it:
    - Builds Keras initializers/regularizers instead of Slim ones
    - sets weights_regularizer/initializer to kernel_regularizer/initializer
    - converts batchnorm decay to momentum
    - converts Slim l2 regularizer weights to the equivalent Keras l2 weights

    Contains a hyperparameter configuration for ops that specifies kernel
    initializer, kernel regularizer, activation. Also contains parameters for
    batch norm operators based on the configuration.

    Note that if the batch_norm parameters are not specified in the config
    (i.e. left to default) then batch norm is excluded from the config.

    Args:
      hyperparams_config: hyperparams.proto object containing
        hyperparameters.

    Raises:
      ValueError: if hyperparams_config is not of type hyperparams.Hyperparams.
    """
    if not isinstance(hyperparams_config,
                      hyperparams_pb2.Hyperparams):
      raise ValueError('hyperparams_config not of type '
                       'hyperparams_pb.Hyperparams.')

    self._batch_norm_params = None
    if hyperparams_config.HasField('batch_norm'):
      self._batch_norm_params = _build_keras_batch_norm_params(
          hyperparams_config.batch_norm)

    self._op_params = {
        'kernel_regularizer': _build_keras_regularizer(
            hyperparams_config.regularizer),
        'kernel_initializer': _build_initializer(
            hyperparams_config.initializer, build_for_keras=True),
        'activation': _build_activation_fn(hyperparams_config.activation)
    }

  def use_batch_norm(self):
    return self._batch_norm_params is not None

  def batch_norm_params(self, **overrides):
    """Returns a dict containing batchnorm layer construction hyperparameters.

    Optionally overrides values in the batchnorm hyperparam dict. Overrides
    only apply to individual calls of this method, and do not affect
    future calls.

    Args:
      **overrides: keyword arguments to override in the hyperparams dictionary

    Returns: dict containing the layer construction keyword arguments, with
      values overridden by the `overrides` keyword arguments.
    """
    if self._batch_norm_params is None:
      new_batch_norm_params = dict()
    else:
      new_batch_norm_params = self._batch_norm_params.copy()
    new_batch_norm_params.update(overrides)
    return new_batch_norm_params

  def params(self, **overrides):
    """Returns a dict containing the layer construction hyperparameters to use.

    Optionally overrides values in the returned dict. Overrides
    only apply to individual calls of this method, and do not affect
    future calls.

    Args:
      **overrides: keyword arguments to override in the hyperparams dictionary.

    Returns: dict containing the layer construction keyword arguments, with
      values overridden by the `overrides` keyword arguments.
    """
    new_params = self._op_params.copy()
    new_params.update(**overrides)
    return new_params


114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def build(hyperparams_config, is_training):
  """Builds tf-slim arg_scope for convolution ops based on the config.

  Returns an arg_scope to use for convolution ops containing weights
  initializer, weights regularizer, activation function, batch norm function
  and batch norm parameters based on the configuration.

  Note that if the batch_norm parameteres are not specified in the config
  (i.e. left to default) then batch norm is excluded from the arg_scope.

  The batch norm parameters are set for updates based on `is_training` argument
  and conv_hyperparams_config.batch_norm.train parameter. During training, they
  are updated only if batch_norm.train parameter is true. However, during eval,
  no updates are made to the batch norm variables. In both cases, their current
  values are used during forward pass.

  Args:
    hyperparams_config: hyperparams.proto object containing
      hyperparameters.
    is_training: Whether the network is in training mode.

  Returns:
136
137
    arg_scope_fn: A function to construct tf-slim arg_scope containing
      hyperparameters for ops.
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

  Raises:
    ValueError: if hyperparams_config is not of type hyperparams.Hyperparams.
  """
  if not isinstance(hyperparams_config,
                    hyperparams_pb2.Hyperparams):
    raise ValueError('hyperparams_config not of type '
                     'hyperparams_pb.Hyperparams.')

  batch_norm = None
  batch_norm_params = None
  if hyperparams_config.HasField('batch_norm'):
    batch_norm = slim.batch_norm
    batch_norm_params = _build_batch_norm_params(
        hyperparams_config.batch_norm, is_training)

  affected_ops = [slim.conv2d, slim.separable_conv2d, slim.conv2d_transpose]
  if hyperparams_config.HasField('op') and (
      hyperparams_config.op == hyperparams_pb2.Hyperparams.FC):
    affected_ops = [slim.fully_connected]
158
  def scope_fn():
159
160
161
162
163
    with (slim.arg_scope([slim.batch_norm], **batch_norm_params)
          if batch_norm_params is not None else
          context_manager.IdentityContextManager()):
      with slim.arg_scope(
          affected_ops,
164
          weights_regularizer=_build_slim_regularizer(
165
166
167
168
169
170
171
              hyperparams_config.regularizer),
          weights_initializer=_build_initializer(
              hyperparams_config.initializer),
          activation_fn=_build_activation_fn(hyperparams_config.activation),
          normalizer_fn=batch_norm) as sc:
        return sc

172
  return scope_fn
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195


def _build_activation_fn(activation_fn):
  """Builds a callable activation from config.

  Args:
    activation_fn: hyperparams_pb2.Hyperparams.activation

  Returns:
    Callable activation function.

  Raises:
    ValueError: On unknown activation function.
  """
  if activation_fn == hyperparams_pb2.Hyperparams.NONE:
    return None
  if activation_fn == hyperparams_pb2.Hyperparams.RELU:
    return tf.nn.relu
  if activation_fn == hyperparams_pb2.Hyperparams.RELU_6:
    return tf.nn.relu6
  raise ValueError('Unknown activation function: {}'.format(activation_fn))


196
def _build_slim_regularizer(regularizer):
197
198
199
200
201
202
203
204
205
206
207
208
209
  """Builds a tf-slim regularizer from config.

  Args:
    regularizer: hyperparams_pb2.Hyperparams.regularizer proto.

  Returns:
    tf-slim regularizer.

  Raises:
    ValueError: On unknown regularizer.
  """
  regularizer_oneof = regularizer.WhichOneof('regularizer_oneof')
  if  regularizer_oneof == 'l1_regularizer':
210
    return slim.l1_regularizer(scale=float(regularizer.l1_regularizer.weight))
211
  if regularizer_oneof == 'l2_regularizer':
212
    return slim.l2_regularizer(scale=float(regularizer.l2_regularizer.weight))
213
214
215
  raise ValueError('Unknown regularizer function: {}'.format(regularizer_oneof))


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def _build_keras_regularizer(regularizer):
  """Builds a keras regularizer from config.

  Args:
    regularizer: hyperparams_pb2.Hyperparams.regularizer proto.

  Returns:
    Keras regularizer.

  Raises:
    ValueError: On unknown regularizer.
  """
  regularizer_oneof = regularizer.WhichOneof('regularizer_oneof')
  if  regularizer_oneof == 'l1_regularizer':
    return tf.keras.regularizers.l1(float(regularizer.l1_regularizer.weight))
  if regularizer_oneof == 'l2_regularizer':
    # The Keras L2 regularizer weight differs from the Slim L2 regularizer
    # weight by a factor of 2
    return tf.keras.regularizers.l2(
        float(regularizer.l2_regularizer.weight * 0.5))
  raise ValueError('Unknown regularizer function: {}'.format(regularizer_oneof))


def _build_initializer(initializer, build_for_keras=False):
240
241
242
243
  """Build a tf initializer from config.

  Args:
    initializer: hyperparams_pb2.Hyperparams.regularizer proto.
244
245
    build_for_keras: Whether the initializers should be built for Keras
      operators. If false builds for Slim.
246
247
248
249
250
251
252
253
254
255
256
257

  Returns:
    tf initializer.

  Raises:
    ValueError: On unknown initializer.
  """
  initializer_oneof = initializer.WhichOneof('initializer_oneof')
  if initializer_oneof == 'truncated_normal_initializer':
    return tf.truncated_normal_initializer(
        mean=initializer.truncated_normal_initializer.mean,
        stddev=initializer.truncated_normal_initializer.stddev)
258
259
260
261
  if initializer_oneof == 'random_normal_initializer':
    return tf.random_normal_initializer(
        mean=initializer.random_normal_initializer.mean,
        stddev=initializer.random_normal_initializer.stddev)
262
263
264
265
266
267
  if initializer_oneof == 'variance_scaling_initializer':
    enum_descriptor = (hyperparams_pb2.VarianceScalingInitializer.
                       DESCRIPTOR.enum_types_by_name['Mode'])
    mode = enum_descriptor.values_by_number[initializer.
                                            variance_scaling_initializer.
                                            mode].name
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    if build_for_keras:
      if initializer.variance_scaling_initializer.uniform:
        return tf.variance_scaling_initializer(
            scale=initializer.variance_scaling_initializer.factor,
            mode=mode.lower(),
            distribution='uniform')
      else:
        # In TF 1.9 release and earlier, the truncated_normal distribution was
        # not supported correctly. So, in these earlier versions of tensorflow,
        # the ValueError will be raised, and we manually truncate the
        # distribution scale.
        #
        # It is insufficient to just set distribution to `normal` from the
        # start, because the `normal` distribution in newer Tensorflow versions
        # creates a truncated distribution, whereas it created untruncated
        # distributions in older versions.
        try:
          return tf.variance_scaling_initializer(
              scale=initializer.variance_scaling_initializer.factor,
              mode=mode.lower(),
              distribution='truncated_normal')
        except ValueError:
          truncate_constant = 0.87962566103423978
          truncated_scale = initializer.variance_scaling_initializer.factor / (
              truncate_constant * truncate_constant
          )
          return tf.variance_scaling_initializer(
              scale=truncated_scale,
              mode=mode.lower(),
              distribution='normal')

    else:
      return slim.variance_scaling_initializer(
          factor=initializer.variance_scaling_initializer.factor,
          mode=mode,
          uniform=initializer.variance_scaling_initializer.uniform)
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
  raise ValueError('Unknown initializer function: {}'.format(
      initializer_oneof))


def _build_batch_norm_params(batch_norm, is_training):
  """Build a dictionary of batch_norm params from config.

  Args:
    batch_norm: hyperparams_pb2.ConvHyperparams.batch_norm proto.
    is_training: Whether the models is in training mode.

  Returns:
    A dictionary containing batch_norm parameters.
  """
  batch_norm_params = {
      'decay': batch_norm.decay,
      'center': batch_norm.center,
      'scale': batch_norm.scale,
      'epsilon': batch_norm.epsilon,
323
324
325
      # Remove is_training parameter from here and deprecate it in the proto
      # once we refactor Faster RCNN models to set is_training through an outer
      # arg_scope in the meta architecture.
326
327
328
      'is_training': is_training and batch_norm.train,
  }
  return batch_norm_params
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350


def _build_keras_batch_norm_params(batch_norm):
  """Build a dictionary of Keras BatchNormalization params from config.

  Args:
    batch_norm: hyperparams_pb2.ConvHyperparams.batch_norm proto.

  Returns:
    A dictionary containing Keras BatchNormalization parameters.
  """
  # Note: Although decay is defined to be 1 - momentum in batch_norm,
  # decay in the slim batch_norm layers was erroneously defined and is
  # actually the same as momentum in the Keras batch_norm layers.
  # For context, see: github.com/keras-team/keras/issues/6839
  batch_norm_params = {
      'momentum': batch_norm.decay,
      'center': batch_norm.center,
      'scale': batch_norm.scale,
      'epsilon': batch_norm.epsilon,
  }
  return batch_norm_params