cifar10_main.py 9.38 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the CIFAR-10 dataset."""
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os

import tensorflow as tf

import resnet_model

parser = argparse.ArgumentParser()

# Basic model parameters.
parser.add_argument('--data_dir', type=str, default='/tmp/cifar10_data',
                    help='The path to the CIFAR-10 data directory.')

parser.add_argument('--model_dir', type=str, default='/tmp/cifar10_model',
                    help='The directory where the model will be stored.')

parser.add_argument('--resnet_size', type=int, default=32,
                    help='The size of the ResNet model to use.')

40
41
parser.add_argument('--train_epochs', type=int, default=250,
                    help='The number of epochs to train.')
42

43
parser.add_argument('--epochs_per_eval', type=int, default=10,
44
45
46
47
48
49
50
                    help='The number of batches to run in between evaluations.')

parser.add_argument('--batch_size', type=int, default=128,
                    help='The number of images per batch.')

FLAGS = parser.parse_args()

51
52
53
54
55
56
57
58
59
60
61
_HEIGHT = 32
_WIDTH = 32
_DEPTH = 3
_NUM_CLASSES = 10
_NUM_DATA_FILES = 5

_NUM_IMAGES = {
    'train': 50000,
    'validation': 10000,
}

62
63
64
65
66
67
68
69
70
# Scale the learning rate linearly with the batch size. When the batch size is
# 128, the learning rate should be 0.1.
_INITIAL_LEARNING_RATE = 0.1 * FLAGS.batch_size / 128
_MOMENTUM = 0.9

# We use a weight decay of 0.0002, which performs better than the 0.0001 that
# was originally suggested.
_WEIGHT_DECAY = 2e-4

71
_BATCHES_PER_EPOCH = _NUM_IMAGES['train'] / FLAGS.batch_size
72
73
74
75


def record_dataset(filenames):
  """Returns an input pipeline Dataset from `filenames`."""
76
  record_bytes = _HEIGHT * _WIDTH * _DEPTH + 1
77
78
79
  return tf.contrib.data.FixedLengthRecordDataset(filenames, record_bytes)


80
81
def get_filenames(is_training):
  """Returns a list of filenames."""
82
83
  data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')

84
85
86
  assert os.path.exists(data_dir), (
      'Run cifar10_download_and_extract.py first to download and extract the '
      'CIFAR-10 data.')
87

88
  if is_training:
89
90
    return [
        os.path.join(data_dir, 'data_batch_%d.bin' % i)
91
        for i in range(1, _NUM_DATA_FILES + 1)
92
93
    ]
  else:
94
    return [os.path.join(data_dir, 'test_batch.bin')]
95
96
97
98
99
100
101


def dataset_parser(value):
  """Parse a CIFAR-10 record from value."""
  # Every record consists of a label followed by the image, with a fixed number
  # of bytes for each.
  label_bytes = 1
102
  image_bytes = _HEIGHT * _WIDTH * _DEPTH
103
104
105
106
107
108
109
110
111
112
113
  record_bytes = label_bytes + image_bytes

  # Convert from a string to a vector of uint8 that is record_bytes long.
  raw_record = tf.decode_raw(value, tf.uint8)

  # The first byte represents the label, which we convert from uint8 to int32.
  label = tf.cast(raw_record[0], tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(raw_record[label_bytes:record_bytes],
114
                           [_DEPTH, _HEIGHT, _WIDTH])
115
116
117
118
119

  # Convert from [depth, height, width] to [height, width, depth], and cast as
  # float32.
  image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)

120
  return image, tf.one_hot(label, _NUM_CLASSES)
121
122
123
124
125


def train_preprocess_fn(image, label):
  """Preprocess a single training image of layout [height, width, depth]."""
  # Resize the image to add four extra pixels on each side.
126
  image = tf.image.resize_image_with_crop_or_pad(image, _HEIGHT + 8, _WIDTH + 8)
127

128
129
  # Randomly crop a [_HEIGHT, _WIDTH] section of the image.
  image = tf.random_crop(image, [_HEIGHT, _WIDTH, _DEPTH])
130
131
132
133
134
135
136

  # Randomly flip the image horizontally.
  image = tf.image.random_flip_left_right(image)

  return image, label


137
def input_fn(is_training, num_epochs=1):
138
139
140
  """Input_fn using the contrib.data input pipeline for CIFAR-10 dataset.

  Args:
141
142
    is_training: A boolean denoting whether the input is for training.
    num_epochs: The number of epochs to repeat the dataset.
143
144
145

  Returns:
    A tuple of images and labels.
146
  """
147
  dataset = record_dataset(get_filenames(is_training))
148
  dataset = dataset.map(dataset_parser, num_threads=1,
149
                        output_buffer_size=2 * FLAGS.batch_size)
150
151

  # For training, preprocess the image and shuffle.
152
  if is_training:
153
    dataset = dataset.map(train_preprocess_fn, num_threads=1,
154
                          output_buffer_size=2 * FLAGS.batch_size)
155
156
157

    # Ensure that the capacity is sufficiently large to provide good random
    # shuffling.
158
    buffer_size = int(0.4 * _NUM_IMAGES['train'])
159
160
161
162
163
164
    dataset = dataset.shuffle(buffer_size=buffer_size)

  # Subtract off the mean and divide by the variance of the pixels.
  dataset = dataset.map(
      lambda image, label: (tf.image.per_image_standardization(image), label),
      num_threads=1,
165
166
167
      output_buffer_size=2 * FLAGS.batch_size)

  dataset = dataset.repeat(num_epochs)
168
169
170

  # Batch results by up to batch_size, and then fetch the tuple from the
  # iterator.
171
  iterator = dataset.batch(FLAGS.batch_size).make_one_shot_iterator()
172
173
174
175
176
177
178
179
180
181
  images, labels = iterator.get_next()

  return images, labels


def cifar10_model_fn(features, labels, mode):
  """Model function for CIFAR-10."""
  tf.summary.image('images', features, max_outputs=6)

  network = resnet_model.cifar10_resnet_v2_generator(
182
      FLAGS.resnet_size, _NUM_CLASSES)
183

184
  inputs = tf.reshape(features, [-1, _HEIGHT, _WIDTH, _DEPTH])
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
  logits = network(inputs, mode == tf.estimator.ModeKeys.TRAIN)

  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
  cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels)

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # Add weight decay to the loss.
  loss = cross_entropy + _WEIGHT_DECAY * tf.add_n(
      [tf.nn.l2_loss(v) for v in tf.trainable_variables()])

  if mode == tf.estimator.ModeKeys.TRAIN:
    global_step = tf.train.get_or_create_global_step()

    # Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
    boundaries = [int(_BATCHES_PER_EPOCH * epoch) for epoch in [100, 150, 200]]
    values = [_INITIAL_LEARNING_RATE * decay for decay in [1, 0.1, 0.01, 0.001]]
    learning_rate = tf.train.piecewise_constant(
        tf.cast(global_step, tf.int32), boundaries, values)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
        momentum=_MOMENTUM)

    # Batch norm requires update ops to be added as a dependency to the train_op
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
      train_op = optimizer.minimize(loss, global_step)
  else:
    train_op = None

231
  accuracy = tf.metrics.accuracy(
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
      tf.argmax(labels, axis=1), predictions['classes'])
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


def main(unused_argv):
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

251
252
  # Set up a RunConfig to only save checkpoints once per training cycle.
  run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
253
  cifar_classifier = tf.estimator.Estimator(
254
      model_fn=cifar10_model_fn, model_dir=FLAGS.model_dir, config=run_config)
255

256
  for _ in range(FLAGS.train_epochs // FLAGS.epochs_per_eval):
257
258
259
260
261
262
263
264
265
266
    tensors_to_log = {
        'learning_rate': 'learning_rate',
        'cross_entropy': 'cross_entropy',
        'train_accuracy': 'train_accuracy'
    }

    logging_hook = tf.train.LoggingTensorHook(
        tensors=tensors_to_log, every_n_iter=100)

    cifar_classifier.train(
267
268
        input_fn=lambda: input_fn(
            is_training=True, num_epochs=FLAGS.epochs_per_eval),
269
270
271
272
        hooks=[logging_hook])

    # Evaluate the model and print results
    eval_results = cifar_classifier.evaluate(
273
        input_fn=lambda: input_fn(is_training=False))
274
275
276
277
278
279
    print(eval_results)


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
  tf.app.run()