ncf_keras_benchmark.py 13.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from absl import flags
from absl.testing import flagsaver
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.recommendation import ncf_common
from official.recommendation import ncf_keras_main
from official.utils.flags import core

FLAGS = flags.FLAGS
Toby Boyd's avatar
Toby Boyd committed
33
NCF_DATA_DIR_NAME = 'movielens_data'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
34
NCF_TF_DATA_1M_BATCH_DIR_NAME = 'gs://tf-perfzero-data/movielens_data/ncf_8gpu_1M_batch'
Toby Boyd's avatar
Toby Boyd committed
35

36

37
class NCFKerasBenchmarkBase(tf.test.Benchmark):
38
39
40
41
42
43
44
45
46
47
48
49
50
  """Base class for NCF model benchmark."""
  local_flags = None

  def __init__(self,
               output_dir=None,
               default_flags=None,
               **kwargs):
    self.output_dir = output_dir
    self.default_flags = default_flags or {}

  def _setup(self):
    """Sets up and resets flags before each test."""
    tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.DEBUG)
51
    if NCFKerasBenchmarkBase.local_flags is None:
Toby Boyd's avatar
Toby Boyd committed
52
      ncf_common.define_ncf_flags()
53
54
55
56
      # Loads flags to get defaults to then override. List cannot be empty.
      flags.FLAGS(['foo'])
      core.set_defaults(**self.default_flags)
      saved_flag_values = flagsaver.save_flag_values()
57
      NCFKerasBenchmarkBase.local_flags = saved_flag_values
58
    else:
59
      flagsaver.restore_flag_values(NCFKerasBenchmarkBase.local_flags)
60

Toby Boyd's avatar
Toby Boyd committed
61
  def _run_and_report_benchmark(self, hr_at_10_min=0, hr_at_10_max=0):
62
63
64
65
    start_time_sec = time.time()
    stats = ncf_keras_main.run_ncf(FLAGS)
    wall_time_sec = time.time() - start_time_sec

Toby Boyd's avatar
Toby Boyd committed
66
67
68
    metrics = []
    metrics.append({'name': 'exp_per_second',
                    'value': stats['avg_exp_per_second']})
69

Toby Boyd's avatar
Toby Boyd committed
70
71
72
73
74
75
76
77
78
79
    if hr_at_10_min > 0:
      metrics.append({'name': 'hr_at_10',
                      'value': stats['eval_hit_rate'],
                      'min_value': hr_at_10_min,
                      'max_value': hr_at_10_max})

      metrics.append({'name': 'train_loss',
                      'value': stats['loss']})

    self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics)
80
81


82
class NCFKerasAccuracy(NCFKerasBenchmarkBase):
83
84
85
86
  """Benchmark NCF model using real data."""

  def __init__(self,
               output_dir=None,
Toby Boyd's avatar
Toby Boyd committed
87
               root_data_dir=None,
88
89
90
91
92
93
               default_flags=None,
               **kwargs):

    default_flags = {}
    default_flags['dataset'] = 'ml-20m'
    default_flags['num_gpus'] = 1
94
    default_flags['train_epochs'] = 10
95
    default_flags['clean'] = True
96
    default_flags['batch_size'] = 99000
97
98
99
100
101
102
103
    default_flags['learning_rate'] = 0.00382059
    default_flags['beta1'] = 0.783529
    default_flags['beta2'] = 0.909003
    default_flags['epsilon'] = 1.45439e-07
    default_flags['layers'] = [256, 256, 128, 64]
    default_flags['num_factors'] = 64
    default_flags['hr_threshold'] = 0.635
104
    default_flags['ml_perf'] = True
105
    default_flags['use_synthetic_data'] = False
Toby Boyd's avatar
Toby Boyd committed
106
    default_flags['data_dir'] = os.path.join(root_data_dir, NCF_DATA_DIR_NAME)
107

108
    super(NCFKerasAccuracy, self).__init__(
109
110
111
112
        output_dir=output_dir,
        default_flags=default_flags,
        **kwargs)

Toby Boyd's avatar
Toby Boyd committed
113
114
  def _run_and_report_benchmark_mlperf_like(self):
    """Run test and report results.
Toby Boyd's avatar
Toby Boyd committed
115

Toby Boyd's avatar
Toby Boyd committed
116
117
118
    Note: MLPerf like tests are not tuned to hit a specific hr@10 value, but
    we want it recorded.
    """
119
    self._run_and_report_benchmark(hr_at_10_min=0.61)
Toby Boyd's avatar
Toby Boyd committed
120

121
  def _run_and_report_benchmark(self, hr_at_10_min=0.630, hr_at_10_max=0.645):
Toby Boyd's avatar
Toby Boyd committed
122
    """Run test and report results.
Toby Boyd's avatar
Toby Boyd committed
123

Toby Boyd's avatar
Toby Boyd committed
124
125
126
127
128
129
130
131
    Note: Target is 0.635, but some runs are below that level. Until we have
    multi-run tests, we have to accept a lower target.

    Args:
      hr_at_10_min: Minimum acceptable hr@10 value.
      hr_at_10_max: Maximum acceptable hr@10 value.
    """
    super(NCFKerasAccuracy, self)._run_and_report_benchmark(
132
133
        hr_at_10_min=hr_at_10_min,
        hr_at_10_max=hr_at_10_max)
134

135
  def benchmark_1_gpu_early_stop(self):
136
    self._setup()
137
    FLAGS.early_stopping = True
138
139
    self._run_and_report_benchmark()

140
  def benchmark_1_gpu_force_v1_path_early_stop(self):
141
142
    self._setup()
    FLAGS.early_stopping = True
143
    FLAGS.force_v2_in_keras_compile = False
144
145
    self._run_and_report_benchmark()

146
147
148
149
150
151
  def benchmark_1_gpu_no_dist_strat_early_stop(self):
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.early_stopping = True
    self._run_and_report_benchmark()

152
  def benchmark_1_gpu_no_dist_strat_force_v1_path_early_stop(self):
153
154
155
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.early_stopping = True
156
    FLAGS.force_v2_in_keras_compile = False
157
158
    self._run_and_report_benchmark()

159
160
161
162
163
164
165
166
167
168
169
170
171
  def benchmark_1_gpu_no_dist_strat_run_eagerly_early_stop(self):
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.early_stopping = True
    FLAGS.run_eagerly = True
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_early_stop(self):
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

172
  def benchmark_xla_1_gpu_force_v1_path_early_stop(self):
173
174
175
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.enable_xla = True
176
    FLAGS.force_v2_in_keras_compile = False
177
178
    self._run_and_report_benchmark()

179
180
181
182
183
184
  def benchmark_1_gpu_ctl_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    self._run_and_report_benchmark()

185
186
187
188
189
190
191
  def benchmark_1_gpu_ctl_run_eagerly_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.run_eagerly = True
    self._run_and_report_benchmark()

192
193
194
195
196
197
198
  def benchmark_xla_1_gpu_ctl_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

199
200
201
202
  def benchmark_2_gpus_early_stop(self):
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.num_gpus = 2
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
203
    FLAGS.eval_batch_size = 160000
204
    self._run_and_report_benchmark()
205

206
  def benchmark_2_gpus_ctl_early_stop(self):
207
    """NCF with custom training loop. Works only in TF 2.0."""
208
209
210
211
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.num_gpus = 2
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
212
    FLAGS.eval_batch_size = 160000
213
214
    self._run_and_report_benchmark()

215
#############################################
216
# Tests below with mlperf in the test name are of two types:
217
218
219
220
221
222
223
#  1) 1 GPU tests are based on MLPerf 0.5 and the TensorFlow pulled submission.
#  2) 8 GPU tests are based on MLPerf 0.5 and use NVIDIA's hyper parameters.
#
# The purpose of both is to get a number to compare to existing results. To do
# this the number of epochs is held constant rather than a race to a given
# accuracy. The accuracy validation is done by the "early_stop" tests.
#############################################
224
225

  def benchmark_1_gpu_mlperf_like(self):
226
    """1 GPU using keras fit/compile."""
227
228
    self._setup()
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
229
    self._run_and_report_benchmark_mlperf_like()
230

231
  def benchmark_1_gpu_no_dist_strat_force_v1_path_mlperf_like(self):
232
233
234
235
    """1 GPU using compile/fit without dist_strat."""
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.distribution_strategy = 'off'
236
    FLAGS.force_v2_in_keras_compile = False
237
238
    self._run_and_report_benchmark()

239
  def benchmark_1_gpu_no_dist_strat_mlperf_like(self):
240
    """1 GPU using compile/fit without dist_strat."""
241
242
243
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.distribution_strategy = 'off'
Toby Boyd's avatar
Toby Boyd committed
244
    self._run_and_report_benchmark_mlperf_like()
245
246
247
248
249
250

  def benchmark_1_gpu_no_dist_strat_run_eagerly_mlperf_like(self):
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.distribution_strategy = 'off'
    FLAGS.run_eagerly = True
Toby Boyd's avatar
Toby Boyd committed
251
    self._run_and_report_benchmark_mlperf_like()
252
253

  def benchmark_xla_1_gpu_mlperf_like(self):
254
    """1 GPU using compile/fit with XLA."""
255
256
    self._setup()
    FLAGS.train_epochs = 7
257
    FLAGS.enable_xla = True
Toby Boyd's avatar
Toby Boyd committed
258
    self._run_and_report_benchmark_mlperf_like()
259

260
261
262
263
264
  def benchmark_1_gpu_ctl_mlperf_like(self):
    """1 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
265
    self._run_and_report_benchmark_mlperf_like()
266

Nimit Nigania's avatar
Nimit Nigania committed
267
268
269
270
271
272
273
274
275
  def benchmark_1_gpu_ctl_fp16_mlperf_like(self):
    """1 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

276
277
278
279
280
281
282
283
  def benchmark_1_gpu_ctl_run_eagerly_mlperf_like(self):
    """1 GPU using CTL with eager and distribution strategy."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.run_eagerly = True
    FLAGS.train_epochs = 7
    self._run_and_report_benchmark()

284
285
  def benchmark_xla_1_gpu_ctl_mlperf_like(self):
    """1 GPU using CTL with XLA."""
286
287
    self._setup()
    FLAGS.keras_use_ctl = True
288
289
    FLAGS.enable_xla = True
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
290
    self._run_and_report_benchmark_mlperf_like()
291

Nimit Nigania's avatar
Nimit Nigania committed
292
293
294
295
296
297
298
299
300
301
  def benchmark_xla_1_gpu_ctl_fp16_mlperf_like(self):
    """1 GPU using CTL with XLA."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.enable_xla = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

302
303
304
  def benchmark_8_gpu_mlperf_like(self):
    """8 GPU using keras fit/compile."""
    self._setup()
305
306
307
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
308
    FLAGS.eval_batch_size = 160000
309
310
311
312
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
Toby Boyd's avatar
Toby Boyd committed
313
    self._run_and_report_benchmark_mlperf_like()
314

315
316
  def benchmark_8_gpu_force_v1_path_mlperf_like(self):
    """8 GPU using keras fit/compile v1 codepath."""
317
318
319
320
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
321
    FLAGS.eval_batch_size = 160000
322
323
324
325
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
326
    FLAGS.force_v2_in_keras_compile = False
327
    self._run_and_report_benchmark_mlperf_like()
328

329
330
331
332
333
334
335
  def benchmark_8_gpu_ctl_mlperf_like(self):
    """8 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
336
    FLAGS.eval_batch_size = 160000
337
338
339
340
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
Toby Boyd's avatar
Toby Boyd committed
341
    self._run_and_report_benchmark_mlperf_like()
342

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
  def benchmark_8_gpu_tf_data_ctl_mlperf_like(self):
    """8 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
    FLAGS.eval_batch_size = 1048000
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
    FLAGS.train_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "training_cycle_*/*")
    FLAGS.eval_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "eval_data/*")
    FLAGS.input_meta_data_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "meta_data.json")
    self._run_and_report_benchmark_mlperf_like()

  def benchmark_8_gpu_tf_data_ctl_fp16_mlperf_like(self):
    """8 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
    FLAGS.eval_batch_size = 1048000
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    FLAGS.train_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "training_cycle_*/*")
    FLAGS.eval_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "eval_data/*")
    FLAGS.input_meta_data_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "meta_data.json")
    self._run_and_report_benchmark_mlperf_like()
378

379
class NCFKerasSynth(NCFKerasBenchmarkBase):
380
381
382
383
384
385
386
387
388
389
  """Benchmark NCF model using synthetic data."""

  def __init__(self,
               output_dir=None,
               default_flags=None,
               **kwargs):

    default_flags = {}
    default_flags['dataset'] = 'ml-20m'
    default_flags['num_gpus'] = 1
390
391
    default_flags['train_epochs'] = 8
    default_flags['batch_size'] = 99000
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
392
    default_flags['eval_batch_size'] = 160000
393
394
395
396
397
398
399
400
401
    default_flags['learning_rate'] = 0.00382059
    default_flags['beta1'] = 0.783529
    default_flags['beta2'] = 0.909003
    default_flags['epsilon'] = 1.45439e-07
    default_flags['layers'] = [256, 256, 128, 64]
    default_flags['num_factors'] = 64
    default_flags['hr_threshold'] = 0.635
    default_flags['use_synthetic_data'] = True

402
    super(NCFKerasSynth, self).__init__(
403
404
405
406
407
408
409
        output_dir=output_dir,
        default_flags=default_flags,
        **kwargs)

  def benchmark_1_gpu(self):
    self._setup()
    self._run_and_report_benchmark()
410
411
412
413
414

  def benchmark_2_gpus(self):
    self._setup()
    FLAGS.num_gpus = 2
    self._run_and_report_benchmark()
David Chen's avatar
David Chen committed
415
416
417
418


if __name__ == '__main__':
  tf.test.main()