augment_test.py 15.5 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
15
16
17
18
19
20
"""Tests for autoaugment."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import random
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from absl.testing import parameterized

import tensorflow as tf

from official.vision.beta.ops import augment


def get_dtype_test_cases():
  return [
      ('uint8', tf.uint8),
      ('int32', tf.int32),
      ('float16', tf.float16),
      ('float32', tf.float32),
  ]


@parameterized.named_parameters(get_dtype_test_cases())
class TransformsTest(parameterized.TestCase, tf.test.TestCase):
  """Basic tests for fundamental transformations."""

  def test_to_from_4d(self, dtype):
    for shape in [(10, 10), (10, 10, 10), (10, 10, 10, 10)]:
      original_ndims = len(shape)
      image = tf.zeros(shape, dtype=dtype)
      image_4d = augment.to_4d(image)
      self.assertEqual(4, tf.rank(image_4d))
      self.assertAllEqual(image, augment.from_4d(image_4d, original_ndims))

  def test_transform(self, dtype):
    image = tf.constant([[1, 2], [3, 4]], dtype=dtype)
    self.assertAllEqual(
        augment.transform(image, transforms=[1] * 8), [[4, 4], [4, 4]])

  def test_translate(self, dtype):
    image = tf.constant(
        [[1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1]], dtype=dtype)
    translations = [-1, -1]
    translated = augment.translate(image=image, translations=translations)
    expected = [[1, 0, 1, 1], [0, 1, 0, 0], [1, 0, 1, 1], [1, 0, 1, 1]]
    self.assertAllEqual(translated, expected)

  def test_translate_shapes(self, dtype):
    translation = [0, 0]
    for shape in [(3, 3), (5, 5), (224, 224, 3)]:
      image = tf.zeros(shape, dtype=dtype)
      self.assertAllEqual(image, augment.translate(image, translation))

  def test_translate_invalid_translation(self, dtype):
    image = tf.zeros((1, 1), dtype=dtype)
    invalid_translation = [[[1, 1]]]
    with self.assertRaisesRegex(TypeError, 'rank 1 or 2'):
      _ = augment.translate(image, invalid_translation)

  def test_rotate(self, dtype):
    image = tf.reshape(tf.cast(tf.range(9), dtype), (3, 3))
    rotation = 90.
    transformed = augment.rotate(image=image, degrees=rotation)
    expected = [[2, 5, 8], [1, 4, 7], [0, 3, 6]]
    self.assertAllEqual(transformed, expected)

  def test_rotate_shapes(self, dtype):
    degrees = 0.
    for shape in [(3, 3), (5, 5), (224, 224, 3)]:
      image = tf.zeros(shape, dtype=dtype)
      self.assertAllEqual(image, augment.rotate(image, degrees))


89
90
91
92
93
94
95
96
97
class AutoaugmentTest(tf.test.TestCase, parameterized.TestCase):

  AVAILABLE_POLICIES = [
      'v0',
      'test',
      'simple',
      'reduced_cifar10',
      'svhn',
      'reduced_imagenet',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
98
      'detection_v0',
99
100
  ]

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
101
102
103
104
  def test_autoaugment(self):
    """Smoke test to be sure there are no syntax errors."""
    image = tf.zeros((224, 224, 3), dtype=tf.uint8)

105
106
107
    for policy in self.AVAILABLE_POLICIES:
      augmenter = augment.AutoAugment(augmentation_name=policy)
      aug_image = augmenter.distort(image)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
108

109
      self.assertEqual((224, 224, 3), aug_image.shape)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
111
112
113
114
115
116
117
118
119
120
121
122
  def test_autoaugment_with_bboxes(self):
    """Smoke test to be sure there are no syntax errors with bboxes."""
    image = tf.zeros((224, 224, 3), dtype=tf.uint8)
    bboxes = tf.ones((2, 4), dtype=tf.float32)

    for policy in self.AVAILABLE_POLICIES:
      augmenter = augment.AutoAugment(augmentation_name=policy)
      aug_image, aug_bboxes = augmenter.distort_with_boxes(image, bboxes)

      self.assertEqual((224, 224, 3), aug_image.shape)
      self.assertEqual((2, 4), aug_bboxes.shape)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
123
124
125
126
127
128
129
130
131
  def test_randaug(self):
    """Smoke test to be sure there are no syntax errors."""
    image = tf.zeros((224, 224, 3), dtype=tf.uint8)

    augmenter = augment.RandAugment()
    aug_image = augmenter.distort(image)

    self.assertEqual((224, 224, 3), aug_image.shape)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
132
133
134
135
136
137
138
139
140
141
142
  def test_randaug_with_bboxes(self):
    """Smoke test to be sure there are no syntax errors with bboxes."""
    image = tf.zeros((224, 224, 3), dtype=tf.uint8)
    bboxes = tf.ones((2, 4), dtype=tf.float32)

    augmenter = augment.RandAugment()
    aug_image, aug_bboxes = augmenter.distort_with_boxes(image, bboxes)

    self.assertEqual((224, 224, 3), aug_image.shape)
    self.assertEqual((2, 4), aug_bboxes.shape)

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
  def test_randaug_build_for_detection(self):
    """Smoke test to be sure there are no syntax errors built for detection."""
    image = tf.zeros((224, 224, 3), dtype=tf.uint8)
    bboxes = tf.ones((2, 4), dtype=tf.float32)

    augmenter = augment.RandAugment.build_for_detection()
    self.assertCountEqual(augmenter.available_ops, [
        'AutoContrast', 'Equalize', 'Invert', 'Posterize', 'Solarize', 'Color',
        'Contrast', 'Brightness', 'Sharpness', 'Cutout', 'SolarizeAdd',
        'Rotate_BBox', 'ShearX_BBox', 'ShearY_BBox', 'TranslateX_BBox',
        'TranslateY_BBox'
    ])

    aug_image, aug_bboxes = augmenter.distort_with_boxes(image, bboxes)
    self.assertEqual((224, 224, 3), aug_image.shape)
    self.assertEqual((2, 4), aug_bboxes.shape)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
160
161
162
163
164
165
166
167
168
169
  def test_all_policy_ops(self):
    """Smoke test to be sure all augmentation functions can execute."""

    prob = 1
    magnitude = 10
    replace_value = [128] * 3
    cutout_const = 100
    translate_const = 250

    image = tf.ones((224, 224, 3), dtype=tf.uint8)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    bboxes = None

    for op_name in augment.NAME_TO_FUNC.keys() - augment.REQUIRE_BOXES_FUNCS:
      func, _, args = augment._parse_policy_info(op_name, prob, magnitude,
                                                 replace_value, cutout_const,
                                                 translate_const)
      image, bboxes = func(image, bboxes, *args)

    self.assertEqual((224, 224, 3), image.shape)
    self.assertIsNone(bboxes)

  def test_all_policy_ops_with_bboxes(self):
    """Smoke test to be sure all augmentation functions can execute."""

    prob = 1
    magnitude = 10
    replace_value = [128] * 3
    cutout_const = 100
    translate_const = 250

    image = tf.ones((224, 224, 3), dtype=tf.uint8)
    bboxes = tf.ones((2, 4), dtype=tf.float32)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
192
193
194
195
196

    for op_name in augment.NAME_TO_FUNC:
      func, _, args = augment._parse_policy_info(op_name, prob, magnitude,
                                                 replace_value, cutout_const,
                                                 translate_const)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
197
      image, bboxes = func(image, bboxes, *args)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
198
199

    self.assertEqual((224, 224, 3), image.shape)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
200
    self.assertEqual((2, 4), bboxes.shape)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
201

Dan Kondratyuk's avatar
Dan Kondratyuk committed
202
203
204
205
206
207
208
209
210
211
  def test_autoaugment_video(self):
    """Smoke test with video to be sure there are no syntax errors."""
    image = tf.zeros((2, 224, 224, 3), dtype=tf.uint8)

    for policy in self.AVAILABLE_POLICIES:
      augmenter = augment.AutoAugment(augmentation_name=policy)
      aug_image = augmenter.distort(image)

      self.assertEqual((2, 224, 224, 3), aug_image.shape)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
212
213
214
215
216
217
218
219
220
221
222
223
  def test_autoaugment_video_with_boxes(self):
    """Smoke test with video to be sure there are no syntax errors."""
    image = tf.zeros((2, 224, 224, 3), dtype=tf.uint8)
    bboxes = tf.ones((2, 2, 4), dtype=tf.float32)

    for policy in self.AVAILABLE_POLICIES:
      augmenter = augment.AutoAugment(augmentation_name=policy)
      aug_image, aug_bboxes = augmenter.distort_with_boxes(image, bboxes)

      self.assertEqual((2, 224, 224, 3), aug_image.shape)
      self.assertEqual((2, 2, 4), aug_bboxes.shape)

Dan Kondratyuk's avatar
Dan Kondratyuk committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
  def test_randaug_video(self):
    """Smoke test with video to be sure there are no syntax errors."""
    image = tf.zeros((2, 224, 224, 3), dtype=tf.uint8)

    augmenter = augment.RandAugment()
    aug_image = augmenter.distort(image)

    self.assertEqual((2, 224, 224, 3), aug_image.shape)

  def test_all_policy_ops_video(self):
    """Smoke test to be sure all video augmentation functions can execute."""

    prob = 1
    magnitude = 10
    replace_value = [128] * 3
    cutout_const = 100
    translate_const = 250

    image = tf.ones((2, 224, 224, 3), dtype=tf.uint8)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    bboxes = None

    for op_name in augment.NAME_TO_FUNC.keys() - augment.REQUIRE_BOXES_FUNCS:
      func, _, args = augment._parse_policy_info(op_name, prob, magnitude,
                                                 replace_value, cutout_const,
                                                 translate_const)
      image, bboxes = func(image, bboxes, *args)

    self.assertEqual((2, 224, 224, 3), image.shape)
    self.assertIsNone(bboxes)

  def test_all_policy_ops_video_with_bboxes(self):
    """Smoke test to be sure all video augmentation functions can execute."""

    prob = 1
    magnitude = 10
    replace_value = [128] * 3
    cutout_const = 100
    translate_const = 250

    image = tf.ones((2, 224, 224, 3), dtype=tf.uint8)
    bboxes = tf.ones((2, 2, 4), dtype=tf.float32)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
265
266
267
268
269

    for op_name in augment.NAME_TO_FUNC:
      func, _, args = augment._parse_policy_info(op_name, prob, magnitude,
                                                 replace_value, cutout_const,
                                                 translate_const)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
270
271
272
273
274
275
276
277
278
279
280
281
      if op_name in {
          'Rotate_BBox',
          'ShearX_BBox',
          'ShearY_BBox',
          'TranslateX_BBox',
          'TranslateY_BBox',
          'TranslateY_Only_BBoxes',
      }:
        with self.assertRaises(ValueError):
          func(image, bboxes, *args)
      else:
        image, bboxes = func(image, bboxes, *args)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
282
283

    self.assertEqual((2, 224, 224, 3), image.shape)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
284
    self.assertEqual((2, 2, 4), bboxes.shape)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
285

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
  def _generate_test_policy(self):
    """Generate a test policy at random."""
    op_list = list(augment.NAME_TO_FUNC.keys())
    size = 6
    prob = [round(random.uniform(0., 1.), 1) for _ in range(size)]
    mag = [round(random.uniform(0, 10)) for _ in range(size)]
    policy = []
    for i in range(0, size, 2):
      policy.append([(op_list[i], prob[i], mag[i]),
                     (op_list[i + 1], prob[i + 1], mag[i + 1])])
    return policy

  def test_custom_policy(self):
    """Test autoaugment with a custom policy."""
    image = tf.zeros((224, 224, 3), dtype=tf.uint8)
    augmenter = augment.AutoAugment(policies=self._generate_test_policy())
    aug_image = augmenter.distort(image)

    self.assertEqual((224, 224, 3), aug_image.shape)

  @parameterized.named_parameters(
      {'testcase_name': '_OutOfRangeProb',
       'sub_policy': ('Equalize', 1.1, 3), 'value': '1.1'},
      {'testcase_name': '_OutOfRangeMag',
       'sub_policy': ('Equalize', 0.9, 11), 'value': '11'},
  )
  def test_invalid_custom_sub_policy(self, sub_policy, value):
    """Test autoaugment with out-of-range values in the custom policy."""
    image = tf.zeros((224, 224, 3), dtype=tf.uint8)
    policy = self._generate_test_policy()
    policy[0][0] = sub_policy
    augmenter = augment.AutoAugment(policies=policy)

    with self.assertRaisesRegex(
        tf.errors.InvalidArgumentError,
        r'Expected \'tf.Tensor\(False, shape=\(\), dtype=bool\)\' to be true. '
        r'Summarized data: ({})'.format(value)):
      augmenter.distort(image)

  def test_invalid_custom_policy_ndim(self):
    """Test autoaugment with wrong dimension in the custom policy."""
    policy = [[('Equalize', 0.8, 1), ('Shear', 0.8, 4)],
              [('TranslateY', 0.6, 3), ('Rotate', 0.9, 3)]]
    policy = [[policy]]

    with self.assertRaisesRegex(
        ValueError,
        r'Expected \(:, :, 3\) but got \(1, 1, 2, 2, 3\).'):
      augment.AutoAugment(policies=policy)

  def test_invalid_custom_policy_shape(self):
    """Test autoaugment with wrong shape in the custom policy."""
    policy = [[('Equalize', 0.8, 1, 1), ('Shear', 0.8, 4, 1)],
              [('TranslateY', 0.6, 3, 1), ('Rotate', 0.9, 3, 1)]]

    with self.assertRaisesRegex(
        ValueError,
        r'Expected \(:, :, 3\) but got \(2, 2, 4\)'):
      augment.AutoAugment(policies=policy)

  def test_invalid_custom_policy_key(self):
    """Test autoaugment with invalid key in the custom policy."""
    image = tf.zeros((224, 224, 3), dtype=tf.uint8)
    policy = [[('AAAAA', 0.8, 1), ('Shear', 0.8, 4)],
              [('TranslateY', 0.6, 3), ('Rotate', 0.9, 3)]]
    augmenter = augment.AutoAugment(policies=policy)

    with self.assertRaisesRegex(KeyError, '\'AAAAA\''):
      augmenter.distort(image)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
356

357
358
359
360
361
362
363
364
365
class RandomErasingTest(tf.test.TestCase, parameterized.TestCase):

  def test_random_erase_replaces_some_pixels(self):
    image = tf.zeros((224, 224, 3), dtype=tf.float32)
    augmenter = augment.RandomErasing(probability=1., max_count=10)

    aug_image = augmenter.distort(image)

    self.assertEqual((224, 224, 3), aug_image.shape)
Simon Geisler's avatar
Simon Geisler committed
366
    self.assertNotEqual(0, tf.reduce_max(aug_image))
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385


class MixupAndCutmixTest(tf.test.TestCase, parameterized.TestCase):

  def test_mixup_and_cutmix_smoothes_labels(self):
    batch_size = 12
    num_classes = 1000
    label_smoothing = 0.1

    images = tf.random.normal((batch_size, 224, 224, 3), dtype=tf.float32)
    labels = tf.range(batch_size)
    augmenter = augment.MixupAndCutmix(
        num_classes=num_classes, label_smoothing=label_smoothing)

    aug_images, aug_labels = augmenter.distort(images, labels)

    self.assertEqual(images.shape, aug_images.shape)
    self.assertEqual(images.dtype, aug_images.dtype)
    self.assertEqual([batch_size, num_classes], aug_labels.shape)
386
387
388
389
    self.assertAllLessEqual(aug_labels, 1. - label_smoothing +
                            2. / num_classes)  # With tolerance
    self.assertAllGreaterEqual(aug_labels, label_smoothing / num_classes -
                               1e4)  # With tolerance
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

  def test_mixup_changes_image(self):
    batch_size = 12
    num_classes = 1000
    label_smoothing = 0.1

    images = tf.random.normal((batch_size, 224, 224, 3), dtype=tf.float32)
    labels = tf.range(batch_size)
    augmenter = augment.MixupAndCutmix(
        mixup_alpha=1., cutmix_alpha=0., num_classes=num_classes)

    aug_images, aug_labels = augmenter.distort(images, labels)

    self.assertEqual(images.shape, aug_images.shape)
    self.assertEqual(images.dtype, aug_images.dtype)
    self.assertEqual([batch_size, num_classes], aug_labels.shape)
406
407
408
409
410
    self.assertAllLessEqual(aug_labels, 1. - label_smoothing +
                            2. / num_classes)  # With tolerance
    self.assertAllGreaterEqual(aug_labels, label_smoothing / num_classes -
                               1e4)  # With tolerance
    self.assertFalse(tf.math.reduce_all(images == aug_images))
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

  def test_cutmix_changes_image(self):
    batch_size = 12
    num_classes = 1000
    label_smoothing = 0.1

    images = tf.random.normal((batch_size, 224, 224, 3), dtype=tf.float32)
    labels = tf.range(batch_size)
    augmenter = augment.MixupAndCutmix(
        mixup_alpha=0., cutmix_alpha=1., num_classes=num_classes)

    aug_images, aug_labels = augmenter.distort(images, labels)

    self.assertEqual(images.shape, aug_images.shape)
    self.assertEqual(images.dtype, aug_images.dtype)
    self.assertEqual([batch_size, num_classes], aug_labels.shape)
427
428
429
430
431
    self.assertAllLessEqual(aug_labels, 1. - label_smoothing +
                            2. / num_classes)  # With tolerance
    self.assertAllGreaterEqual(aug_labels, label_smoothing / num_classes -
                               1e4)  # With tolerance
    self.assertFalse(tf.math.reduce_all(images == aug_images))
432
433


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
434
435
if __name__ == '__main__':
  tf.test.main()