"docs/examples.md" did not exist on "aed1419c64748f31e66fe04875a6696b70761038"
exporter_test.py 16.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for object_detection.export_inference_graph."""
import os
import mock
import numpy as np
import tensorflow as tf
from object_detection import exporter
from object_detection.builders import model_builder
from object_detection.core import model
from object_detection.protos import pipeline_pb2


class FakeModel(model.DetectionModel):

29
30
31
  def __init__(self, add_detection_masks=False):
    self._add_detection_masks = add_detection_masks

32
  def preprocess(self, inputs):
33
    return tf.identity(inputs)
34
35

  def predict(self, preprocessed_inputs):
36
    return {'image': tf.layers.conv2d(preprocessed_inputs, 3, 1)}
37
38
39

  def postprocess(self, prediction_dict):
    with tf.control_dependencies(prediction_dict.values()):
40
      postprocessed_tensors = {
41
42
43
44
45
46
          'detection_boxes': tf.constant([[0.0, 0.0, 0.5, 0.5],
                                          [0.5, 0.5, 0.8, 0.8]], tf.float32),
          'detection_scores': tf.constant([[0.7, 0.6]], tf.float32),
          'detection_classes': tf.constant([[0, 1]], tf.float32),
          'num_detections': tf.constant([2], tf.float32)
      }
47
48
49
50
      if self._add_detection_masks:
        postprocessed_tensors['detection_masks'] = tf.constant(
            np.arange(32).reshape([2, 4, 4]), tf.float32)
    return postprocessed_tensors
51
52
53
54
55
56
57
58
59
60
61
62
63
64

  def restore_fn(self, checkpoint_path, from_detection_checkpoint):
    pass

  def loss(self, prediction_dict):
    pass


class ExportInferenceGraphTest(tf.test.TestCase):

  def _save_checkpoint_from_mock_model(self, checkpoint_path,
                                       use_moving_averages):
    g = tf.Graph()
    with g.as_default():
65
66
67
68
69
      mock_model = FakeModel()
      preprocessed_inputs = mock_model.preprocess(
          tf.ones([1, 3, 4, 3], tf.float32))
      predictions = mock_model.predict(preprocessed_inputs)
      mock_model.postprocess(predictions)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
      if use_moving_averages:
        tf.train.ExponentialMovingAverage(0.0).apply()
      saver = tf.train.Saver()
      init = tf.global_variables_initializer()
      with self.test_session() as sess:
        sess.run(init)
        saver.save(sess, checkpoint_path)

  def _load_inference_graph(self, inference_graph_path):
    od_graph = tf.Graph()
    with od_graph.as_default():
      od_graph_def = tf.GraphDef()
      with tf.gfile.GFile(inference_graph_path) as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')
    return od_graph

  def _create_tf_example(self, image_array):
    with self.test_session():
      encoded_image = tf.image.encode_jpeg(tf.constant(image_array)).eval()
    def _bytes_feature(value):
      return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': _bytes_feature(encoded_image),
        'image/format': _bytes_feature('jpg'),
        'image/source_id': _bytes_feature('image_id')
    })).SerializeToString()
    return example

  def test_export_graph_with_image_tensor_input(self):
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
103
      mock_builder.return_value = FakeModel()
104
105
106
107
108
109
110
111
112
113
114
115
116
117
      inference_graph_path = os.path.join(self.get_temp_dir(),
                                          'exported_graph.pbtxt')

      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=None,
          inference_graph_path=inference_graph_path)

  def test_export_graph_with_tf_example_input(self):
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
118
      mock_builder.return_value = FakeModel()
119
120
121
122
123
124
125
126
127
128
      inference_graph_path = os.path.join(self.get_temp_dir(),
                                          'exported_graph.pbtxt')
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='tf_example',
          pipeline_config=pipeline_config,
          checkpoint_path=None,
          inference_graph_path=inference_graph_path)

129
130
131
132
133
134
135
136
137
138
139
140
141
142
  def test_export_graph_with_encoded_image_string_input(self):
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel()
      inference_graph_path = os.path.join(self.get_temp_dir(),
                                          'exported_graph.pbtxt')
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='encoded_image_string_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=None,
          inference_graph_path=inference_graph_path)

143
144
145
146
147
148
149
150
  def test_export_frozen_graph(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=False)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
151
      mock_builder.return_value = FakeModel()
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)

  def test_export_frozen_graph_with_moving_averages(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=True)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
168
      mock_builder.return_value = FakeModel()
169
170
171
172
173
174
175
176
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = True
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
  def test_export_model_with_all_output_nodes(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=False)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel(add_detection_masks=True)
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)
    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph):
      inference_graph.get_tensor_by_name('image_tensor:0')
      inference_graph.get_tensor_by_name('detection_boxes:0')
      inference_graph.get_tensor_by_name('detection_scores:0')
      inference_graph.get_tensor_by_name('detection_classes:0')
      inference_graph.get_tensor_by_name('detection_masks:0')
      inference_graph.get_tensor_by_name('num_detections:0')

  def test_export_model_with_detection_only_nodes(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=False)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel(add_detection_masks=False)
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)
    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph):
      inference_graph.get_tensor_by_name('image_tensor:0')
      inference_graph.get_tensor_by_name('detection_boxes:0')
      inference_graph.get_tensor_by_name('detection_scores:0')
      inference_graph.get_tensor_by_name('detection_classes:0')
      inference_graph.get_tensor_by_name('num_detections:0')
      with self.assertRaises(KeyError):
        inference_graph.get_tensor_by_name('detection_masks:0')

226
227
228
229
230
231
232
233
  def test_export_and_run_inference_with_image_tensor(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=False)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
234
      mock_builder.return_value = FakeModel(add_detection_masks=True)
235
236
237
238
239
240
241
242
243
244
245
246
247
248
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)

    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph) as sess:
      image_tensor = inference_graph.get_tensor_by_name('image_tensor:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
249
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
250
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
251
252
      (boxes, scores, classes, masks, num_detections) = sess.run(
          [boxes, scores, classes, masks, num_detections],
253
254
255
256
257
          feed_dict={image_tensor: np.ones((1, 4, 4, 3)).astype(np.uint8)})
      self.assertAllClose(boxes, [[0.0, 0.0, 0.5, 0.5],
                                  [0.5, 0.5, 0.8, 0.8]])
      self.assertAllClose(scores, [[0.7, 0.6]])
      self.assertAllClose(classes, [[1, 2]])
258
      self.assertAllClose(masks, np.arange(32).reshape([2, 4, 4]))
259
260
      self.assertAllClose(num_detections, [2])

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
  def _create_encoded_image_string(self, image_array_np, encoding_format):
    od_graph = tf.Graph()
    with od_graph.as_default():
      if encoding_format == 'jpg':
        encoded_string = tf.image.encode_jpeg(image_array_np)
      elif encoding_format == 'png':
        encoded_string = tf.image.encode_png(image_array_np)
      else:
        raise ValueError('Supports only the following formats: `jpg`, `png`')
    with self.test_session(graph=od_graph):
      return encoded_string.eval()

  def test_export_and_run_inference_with_encoded_image_string_tensor(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=False)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel(add_detection_masks=True)
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='encoded_image_string_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)

    inference_graph = self._load_inference_graph(inference_graph_path)
    jpg_image_str = self._create_encoded_image_string(
        np.ones((4, 4, 3)).astype(np.uint8), 'jpg')
    png_image_str = self._create_encoded_image_string(
        np.ones((4, 4, 3)).astype(np.uint8), 'png')
    with self.test_session(graph=inference_graph) as sess:
      image_str_tensor = inference_graph.get_tensor_by_name(
          'encoded_image_string_tensor:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
      for image_str in [jpg_image_str, png_image_str]:
        (boxes_np, scores_np, classes_np, masks_np,
         num_detections_np) = sess.run(
             [boxes, scores, classes, masks, num_detections],
             feed_dict={image_str_tensor: image_str})
        self.assertAllClose(boxes_np, [[0.0, 0.0, 0.5, 0.5],
                                       [0.5, 0.5, 0.8, 0.8]])
        self.assertAllClose(scores_np, [[0.7, 0.6]])
        self.assertAllClose(classes_np, [[1, 2]])
        self.assertAllClose(masks_np, np.arange(32).reshape([2, 4, 4]))
        self.assertAllClose(num_detections_np, [2])

315
316
317
318
319
320
321
322
  def test_export_and_run_inference_with_tf_example(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=False)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
323
      mock_builder.return_value = FakeModel(add_detection_masks=True)
324
325
326
327
328
329
330
331
332
333
334
335
336
337
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='tf_example',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)

    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph) as sess:
      tf_example = inference_graph.get_tensor_by_name('tf_example:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
338
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
339
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
340
341
      (boxes, scores, classes, masks, num_detections) = sess.run(
          [boxes, scores, classes, masks, num_detections],
342
343
344
345
346
347
          feed_dict={tf_example: self._create_tf_example(
              np.ones((4, 4, 3)).astype(np.uint8))})
      self.assertAllClose(boxes, [[0.0, 0.0, 0.5, 0.5],
                                  [0.5, 0.5, 0.8, 0.8]])
      self.assertAllClose(scores, [[0.7, 0.6]])
      self.assertAllClose(classes, [[1, 2]])
348
      self.assertAllClose(masks, np.arange(32).reshape([2, 4, 4]))
349
350
351
352
353
      self.assertAllClose(num_detections, [2])


if __name__ == '__main__':
  tf.test.main()