".github/vscode:/vscode.git/clone" did not exist on "61cf00e1121509c0dfa19d2a8608471b23a3f6a9"
DenoisingAutoencoder.py 5.58 KB
Newer Older
Jiří Vahala's avatar
Jiří Vahala committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import tensorflow as tf

class AdditiveGaussianNoiseAutoencoder(object):
    def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(),
                 scale = 0.1):
        self.n_input = n_input
        self.n_hidden = n_hidden
        self.transfer = transfer_function
        self.scale = tf.placeholder(tf.float32)
        self.training_scale = scale
        network_weights = self._initialize_weights()
        self.weights = network_weights

        # model
        self.x = tf.placeholder(tf.float32, [None, self.n_input])
        self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)),
                self.weights['w1']),
                self.weights['b1']))
        self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])

        # cost
22
        self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
Jiří Vahala's avatar
Jiří Vahala committed
23
24
        self.optimizer = optimizer.minimize(self.cost)

25
        init = tf.global_variables_initializer()
Jiří Vahala's avatar
Jiří Vahala committed
26
27
28
29
30
        self.sess = tf.Session()
        self.sess.run(init)

    def _initialize_weights(self):
        all_weights = dict()
31
32
        all_weights['w1'] = tf.get_variable("w1", shape=[self.n_input, self.n_hidden],
            initializer=tf.contrib.layers.xavier_initializer())
Jiří Vahala's avatar
Jiří Vahala committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
        all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype = tf.float32))
        all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype = tf.float32))
        all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype = tf.float32))
        return all_weights

    def partial_fit(self, X):
        cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict = {self.x: X,
                                                                            self.scale: self.training_scale
                                                                            })
        return cost

    def calc_total_cost(self, X):
        return self.sess.run(self.cost, feed_dict = {self.x: X,
                                                     self.scale: self.training_scale
                                                     })

    def transform(self, X):
        return self.sess.run(self.hidden, feed_dict = {self.x: X,
                                                       self.scale: self.training_scale
                                                       })

54
    def generate(self, hidden=None):
Jiří Vahala's avatar
Jiří Vahala committed
55
        if hidden is None:
56
            hidden = self.sess.run(tf.random_normal([1, self.n_hidden]))
Jiří Vahala's avatar
Jiří Vahala committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        return self.sess.run(self.reconstruction, feed_dict = {self.hidden: hidden})

    def reconstruct(self, X):
        return self.sess.run(self.reconstruction, feed_dict = {self.x: X,
                                                               self.scale: self.training_scale
                                                               })

    def getWeights(self):
        return self.sess.run(self.weights['w1'])

    def getBiases(self):
        return self.sess.run(self.weights['b1'])


class MaskingNoiseAutoencoder(object):
    def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(),
                 dropout_probability = 0.95):
        self.n_input = n_input
        self.n_hidden = n_hidden
        self.transfer = transfer_function
        self.dropout_probability = dropout_probability
        self.keep_prob = tf.placeholder(tf.float32)

        network_weights = self._initialize_weights()
        self.weights = network_weights

        # model
        self.x = tf.placeholder(tf.float32, [None, self.n_input])
        self.hidden = self.transfer(tf.add(tf.matmul(tf.nn.dropout(self.x, self.keep_prob), self.weights['w1']),
                                           self.weights['b1']))
        self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])

        # cost
90
        self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
Jiří Vahala's avatar
Jiří Vahala committed
91
92
        self.optimizer = optimizer.minimize(self.cost)

93
        init = tf.global_variables_initializer()
Jiří Vahala's avatar
Jiří Vahala committed
94
95
96
97
98
        self.sess = tf.Session()
        self.sess.run(init)

    def _initialize_weights(self):
        all_weights = dict()
99
100
        all_weights['w1'] = tf.get_variable("w1", shape=[self.n_input, self.n_hidden],
            initializer=tf.contrib.layers.xavier_initializer())
Jiří Vahala's avatar
Jiří Vahala committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype = tf.float32))
        all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype = tf.float32))
        all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype = tf.float32))
        return all_weights

    def partial_fit(self, X):
        cost, opt = self.sess.run((self.cost, self.optimizer),
                                  feed_dict = {self.x: X, self.keep_prob: self.dropout_probability})
        return cost

    def calc_total_cost(self, X):
        return self.sess.run(self.cost, feed_dict = {self.x: X, self.keep_prob: 1.0})

    def transform(self, X):
        return self.sess.run(self.hidden, feed_dict = {self.x: X, self.keep_prob: 1.0})

117
    def generate(self, hidden=None):
Jiří Vahala's avatar
Jiří Vahala committed
118
        if hidden is None:
119
            hidden = self.sess.run(tf.random_normal([1, self.n_hidden]))
Jiří Vahala's avatar
Jiří Vahala committed
120
121
122
123
124
125
126
127
128
129
        return self.sess.run(self.reconstruction, feed_dict = {self.hidden: hidden})

    def reconstruct(self, X):
        return self.sess.run(self.reconstruction, feed_dict = {self.x: X, self.keep_prob: 1.0})

    def getWeights(self):
        return self.sess.run(self.weights['w1'])

    def getBiases(self):
        return self.sess.run(self.weights['b1'])