Autoencoder.py 2.2 KB
Newer Older
Jiří Vahala's avatar
Jiří Vahala committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import tensorflow as tf

class Autoencoder(object):

    def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus, optimizer = tf.train.AdamOptimizer()):
        self.n_input = n_input
        self.n_hidden = n_hidden
        self.transfer = transfer_function

        network_weights = self._initialize_weights()
        self.weights = network_weights

        # model
        self.x = tf.placeholder(tf.float32, [None, self.n_input])
        self.hidden = self.transfer(tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1']))
        self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])

        # cost
19
        self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
Jiří Vahala's avatar
Jiří Vahala committed
20
21
        self.optimizer = optimizer.minimize(self.cost)

22
        init = tf.global_variables_initializer()
Jiří Vahala's avatar
Jiří Vahala committed
23
24
25
26
27
28
        self.sess = tf.Session()
        self.sess.run(init)


    def _initialize_weights(self):
        all_weights = dict()
29
30
        all_weights['w1'] = tf.get_variable("w1", shape=[self.n_input, self.n_hidden],
            initializer=tf.contrib.layers.xavier_initializer())
Jiří Vahala's avatar
Jiří Vahala committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
        all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
        all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
        all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
        return all_weights

    def partial_fit(self, X):
        cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X})
        return cost

    def calc_total_cost(self, X):
        return self.sess.run(self.cost, feed_dict = {self.x: X})

    def transform(self, X):
        return self.sess.run(self.hidden, feed_dict={self.x: X})

    def generate(self, hidden = None):
        if hidden is None:
48
            hidden = self.sess.run(tf.random_normal([1, self.n_hidden]))
Jiří Vahala's avatar
Jiří Vahala committed
49
50
51
52
53
54
55
56
57
58
59
        return self.sess.run(self.reconstruction, feed_dict={self.hidden: hidden})

    def reconstruct(self, X):
        return self.sess.run(self.reconstruction, feed_dict={self.x: X})

    def getWeights(self):
        return self.sess.run(self.weights['w1'])

    def getBiases(self):
        return self.sess.run(self.weights['b1'])