ncf_test.py 9.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests NCF."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
Reed's avatar
Reed committed
22
import mock
23
24
25
26

import numpy as np
import tensorflow as tf

Reed's avatar
Reed committed
27
from absl.testing import flagsaver
28
from official.recommendation import constants as rconst
29
from official.recommendation import data_pipeline
30
from official.recommendation import neumf_model
Shining Sun's avatar
Shining Sun committed
31
32
from official.recommendation import ncf_common
from official.recommendation import ncf_estimator_main
33
34
from official.recommendation import ncf_keras_main
from official.utils.testing import integration
35
from tensorflow.python.eager import context # pylint: disable=ungrouped-imports
36
37
38


NUM_TRAIN_NEG = 4
39
40
41


class NcfTest(tf.test.TestCase):
Reed's avatar
Reed committed
42
43
44
45

  @classmethod
  def setUpClass(cls):  # pylint: disable=invalid-name
    super(NcfTest, cls).setUpClass()
Shining Sun's avatar
Shining Sun committed
46
    ncf_common.define_ncf_flags()
Reed's avatar
Reed committed
47

48
49
50
51
52
53
54
55
56
57
58
59
60
  def setUp(self):
    self.top_k_old = rconst.TOP_K
    self.num_eval_negatives_old = rconst.NUM_EVAL_NEGATIVES
    rconst.NUM_EVAL_NEGATIVES = 2

  def tearDown(self):
    rconst.NUM_EVAL_NEGATIVES = self.num_eval_negatives_old
    rconst.TOP_K = self.top_k_old

  def get_hit_rate_and_ndcg(self, predicted_scores_by_user, items_by_user,
                            top_k=rconst.TOP_K, match_mlperf=False):
    rconst.TOP_K = top_k
    rconst.NUM_EVAL_NEGATIVES = predicted_scores_by_user.shape[1] - 1
61
62
63
64
65
66
67
    batch_size = items_by_user.shape[0]

    users = np.repeat(np.arange(batch_size)[:, np.newaxis],
                      rconst.NUM_EVAL_NEGATIVES + 1, axis=1)
    users, items, duplicate_mask = \
      data_pipeline.BaseDataConstructor._assemble_eval_batch(
          users, items_by_user[:, -1:], items_by_user[:, :-1], batch_size)
68
69
70
71
72
73
74

    g = tf.Graph()
    with g.as_default():
      logits = tf.convert_to_tensor(
          predicted_scores_by_user.reshape((-1, 1)), tf.float32)
      softmax_logits = tf.concat([tf.zeros(logits.shape, dtype=logits.dtype),
                                  logits], axis=1)
75
      duplicate_mask = tf.convert_to_tensor(duplicate_mask, tf.float32)
76

Shining Sun's avatar
Shining Sun committed
77
      metric_ops = neumf_model._get_estimator_spec_with_metrics(
78
79
80
81
82
83
84
85
86
87
88
89
90
91
          logits=logits, softmax_logits=softmax_logits,
          duplicate_mask=duplicate_mask, num_training_neg=NUM_TRAIN_NEG,
          match_mlperf=match_mlperf).eval_metric_ops

      hr = metric_ops[rconst.HR_KEY]
      ndcg = metric_ops[rconst.NDCG_KEY]

      init = [tf.global_variables_initializer(),
              tf.local_variables_initializer()]

    with self.test_session(graph=g) as sess:
      sess.run(init)
      return sess.run([hr[1], ndcg[1]])

92
93
94
  def test_hit_rate_and_ndcg(self):
    # Test with no duplicate items
    predictions = np.array([
95
96
97
98
        [2., 0., 1.],  # In top 2
        [1., 0., 2.],  # In top 1
        [2., 1., 0.],  # In top 3
        [3., 4., 2.]   # In top 3
99
100
101
    ])
    items = np.array([
        [2, 3, 1],
102
        [3, 1, 2],
103
        [2, 1, 3],
104
        [1, 3, 2],
105
    ])
106
107

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1)
108
109
    self.assertAlmostEqual(hr, 1 / 4)
    self.assertAlmostEqual(ndcg, 1 / 4)
110
111

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2)
112
113
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
114
115

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3)
116
117
118
119
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(4)) / 4)

120
121
    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1,
                                          match_mlperf=True)
122
123
    self.assertAlmostEqual(hr, 1 / 4)
    self.assertAlmostEqual(ndcg, 1 / 4)
124
125
126

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2,
                                          match_mlperf=True)
127
128
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
129
130
131

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3,
                                          match_mlperf=True)
132
133
134
135
136
137
138
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(4)) / 4)

    # Test with duplicate items. In the MLPerf case, we treat the duplicates as
    # a single item. Otherwise, we treat the duplicates as separate items.
    predictions = np.array([
139
140
141
142
        [2., 2., 3., 1.],  # In top 4. MLPerf: In top 3
        [1., 0., 2., 3.],  # In top 1. MLPerf: In top 1
        [2., 3., 2., 0.],  # In top 4. MLPerf: In top 3
        [2., 4., 2., 3.]   # In top 2. MLPerf: In top 2
143
144
    ])
    items = np.array([
145
146
147
148
        [2, 2, 3, 1],
        [2, 3, 4, 1],
        [2, 3, 2, 1],
        [3, 2, 1, 4],
149
    ])
150
    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1)
151
152
    self.assertAlmostEqual(hr, 1 / 4)
    self.assertAlmostEqual(ndcg, 1 / 4)
153
154

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2)
155
156
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
157
158

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3)
159
160
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
161
162

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 4)
163
164
165
166
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(5)) / 4)

167
168
    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1,
                                          match_mlperf=True)
169
170
    self.assertAlmostEqual(hr, 1 / 4)
    self.assertAlmostEqual(ndcg, 1 / 4)
171
172
173

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2,
                                          match_mlperf=True)
174
175
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
176
177
178

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3,
                                          match_mlperf=True)
179
180
181
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(4)) / 4)
182
183
184

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 4,
                                          match_mlperf=True)
185
186
187
188
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(4)) / 4)

189
  _BASE_END_TO_END_FLAGS = ['-batch_size', '1024', '-train_epochs', '1']
190

191
192
193
194
195
196
197
198
199
200
201
  @mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
  def test_end_to_end_estimator(self):
    integration.run_synthetic(
        ncf_estimator_main.main, tmp_root=self.get_temp_dir(), max_train=None,
        extra_flags=self._BASE_END_TO_END_FLAGS)

  @mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
  def test_end_to_end_estimator_mlperf(self):
    integration.run_synthetic(
        ncf_estimator_main.main, tmp_root=self.get_temp_dir(), max_train=None,
        extra_flags=self._BASE_END_TO_END_FLAGS + ['-ml_perf', 'True'])
Reed's avatar
Reed committed
202

203
  @mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
204
  def test_end_to_end_keras_no_dist_strat(self):
205
206
207
    integration.run_synthetic(
        ncf_keras_main.main, tmp_root=self.get_temp_dir(), max_train=None,
        extra_flags=self._BASE_END_TO_END_FLAGS +
208
        ['-distribution_strategy', 'off'])
Reed's avatar
Reed committed
209

210
  @mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
211
  def test_end_to_end_keras_dist_strat(self):
212
213
    integration.run_synthetic(
        ncf_keras_main.main, tmp_root=self.get_temp_dir(), max_train=None,
214
215
216
217
218
219
220
221
222
        extra_flags=self._BASE_END_TO_END_FLAGS + ['-num_gpus', '0'])

  @mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
  def test_end_to_end_keras_dist_strat_ctl(self):
    flags = (self._BASE_END_TO_END_FLAGS +
             ['-num_gpus', '0'] +
             ['-keras_use_ctl', 'True'])
    integration.run_synthetic(
        ncf_keras_main.main, tmp_root=self.get_temp_dir(), max_train=None,
guptapriya's avatar
guptapriya committed
223
        extra_flags=flags)
Reed's avatar
Reed committed
224

225
  @mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
226
  def test_end_to_end_keras_1_gpu_dist_strat(self):
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    if context.num_gpus() < 1:
      self.skipTest(
          "{} GPUs are not available for this test. {} GPUs are available".
          format(1, context.num_gpus()))

    integration.run_synthetic(
        ncf_keras_main.main, tmp_root=self.get_temp_dir(), max_train=None,
        extra_flags=self._BASE_END_TO_END_FLAGS + ['-num_gpus', '1'])

  @mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
  def test_end_to_end_keras_2_gpu(self):
    if context.num_gpus() < 2:
      self.skipTest(
          "{} GPUs are not available for this test. {} GPUs are available".
          format(2, context.num_gpus()))

    integration.run_synthetic(
        ncf_keras_main.main, tmp_root=self.get_temp_dir(), max_train=None,
        extra_flags=self._BASE_END_TO_END_FLAGS + ['-num_gpus', '2'])
246
247
248

if __name__ == "__main__":
  tf.test.main()