cifar10_test.py 4.95 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tempfile import mkstemp

import numpy as np
import tensorflow as tf

25
from official.resnet import cifar10_main
26
27
28

tf.logging.set_verbosity(tf.logging.ERROR)

29
_BATCH_SIZE = 128
Neal Wu's avatar
Neal Wu committed
30
31
32
_HEIGHT = 32
_WIDTH = 32
_NUM_CHANNELS = 3
33

34
35

class BaseTest(tf.test.TestCase):
36

37
38
39
  def test_dataset_input_fn(self):
    fake_data = bytearray()
    fake_data.append(7)
Neal Wu's avatar
Neal Wu committed
40
41
    for i in range(_NUM_CHANNELS):
      for _ in range(_HEIGHT * _WIDTH):
42
43
44
        fake_data.append(i)

    _, filename = mkstemp(dir=self.get_temp_dir())
45
46
47
    data_file = open(filename, 'wb')
    data_file.write(fake_data)
    data_file.close()
48

49
50
51
52
    fake_dataset = tf.data.FixedLengthRecordDataset(
        filename, cifar10_main._RECORD_BYTES)
    fake_dataset = fake_dataset.map(
        lambda val: cifar10_main.parse_record(val, False))
53
54
    image, label = fake_dataset.make_one_shot_iterator().get_next()

Neal Wu's avatar
Neal Wu committed
55
56
    self.assertAllEqual(label.shape, (10,))
    self.assertAllEqual(image.shape, (_HEIGHT, _WIDTH, _NUM_CHANNELS))
57
58
59
60
61
62
63
64

    with self.test_session() as sess:
      image, label = sess.run([image, label])

      self.assertAllEqual(label, np.array([int(i == 7) for i in range(10)]))

      for row in image:
        for pixel in row:
65
          self.assertAllClose(pixel, np.array([-1.225, 0., 1.225]), rtol=1e-3)
66

67
  def cifar10_model_fn_helper(self, mode, version, multi_gpu=False):
68
69
70
71
    input_fn = cifar10_main.get_synth_input_fn()
    dataset = input_fn(True, '', _BATCH_SIZE)
    iterator = dataset.make_one_shot_iterator()
    features, labels = iterator.get_next()
72
73
74
75
76
    spec = cifar10_main.cifar10_model_fn(
        features, labels, mode, {
            'resnet_size': 32,
            'data_format': 'channels_last',
            'batch_size': _BATCH_SIZE,
77
            'version': version,
Karmel Allison's avatar
Karmel Allison committed
78
            'multi_gpu': multi_gpu
79
        })
80
81
82

    predictions = spec.predictions
    self.assertAllEqual(predictions['probabilities'].shape,
83
                        (_BATCH_SIZE, 10))
84
    self.assertEqual(predictions['probabilities'].dtype, tf.float32)
85
    self.assertAllEqual(predictions['classes'].shape, (_BATCH_SIZE,))
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    self.assertEqual(predictions['classes'].dtype, tf.int64)

    if mode != tf.estimator.ModeKeys.PREDICT:
      loss = spec.loss
      self.assertAllEqual(loss.shape, ())
      self.assertEqual(loss.dtype, tf.float32)

    if mode == tf.estimator.ModeKeys.EVAL:
      eval_metric_ops = spec.eval_metric_ops
      self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ())
      self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ())
      self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32)
      self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32)

100
101
  def test_cifar10_model_fn_train_mode_v1(self):
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=1)
102

103
104
  def test_cifar10_model_fn_trainmode__v2(self):
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=2)
Karmel Allison's avatar
Karmel Allison committed
105

106
107
108
  def test_cifar10_model_fn_train_mode_multi_gpu_v1(self):
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=1,
                                 multi_gpu=True)
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
  def test_cifar10_model_fn_train_mode_multi_gpu_v2(self):
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=2,
                                 multi_gpu=True)

  def test_cifar10_model_fn_eval_mode_v1(self):
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.EVAL, version=1)

  def test_cifar10_model_fn_eval_mode_v2(self):
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.EVAL, version=2)

  def test_cifar10_model_fn_predict_mode_v1(self):
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.PREDICT, version=1)

  def test_cifar10_model_fn_predict_mode_v2(self):
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.PREDICT, version=2)
125

Neal Wu's avatar
Neal Wu committed
126
127
128
129
  def test_cifar10model_shape(self):
    batch_size = 135
    num_classes = 246

130
131
132
133
134
    for version in (1, 2):
      model = cifar10_main.Cifar10Model(32, data_format='channels_last',
                                     num_classes=num_classes, version=version)
      fake_input = tf.random_uniform([batch_size, _HEIGHT, _WIDTH, _NUM_CHANNELS])
      output = model(fake_input, training=True)
Neal Wu's avatar
Neal Wu committed
135

136
      self.assertAllEqual(output.shape, (batch_size, num_classes))
Neal Wu's avatar
Neal Wu committed
137

138
139
140

if __name__ == '__main__':
  tf.test.main()