train.py 2.54 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Hongkun Yu's avatar
Hongkun Yu committed
15
"""TensorFlow Model Garden Vision training driver."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
18
19
20

from absl import app
from absl import flags
import gin

Hongkun Yu's avatar
Hongkun Yu committed
21
22
23
# pylint: disable=unused-import
from official.common import registry_imports
# pylint: enable=unused-import
24
from official.common import distribute_utils
Abdullah Rashwan's avatar
Abdullah Rashwan committed
25
26
27
from official.common import flags as tfm_flags
from official.core import task_factory
from official.core import train_lib
Le Hou's avatar
Le Hou committed
28
from official.core import train_utils
Abdullah Rashwan's avatar
Abdullah Rashwan committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from official.modeling import performance

FLAGS = flags.FLAGS


def main(_):
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
  params = train_utils.parse_configuration(FLAGS)
  model_dir = FLAGS.model_dir
  if 'train' in FLAGS.mode:
    # Pure eval modes do not output yaml files. Otherwise continuous eval job
    # may race against the train job for writing the same file.
    train_utils.serialize_config(params, model_dir)

  # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
  # can have significant impact on model speeds by utilizing float16 in case of
  # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
  # dtype is float16
  if params.runtime.mixed_precision_dtype:
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
48
    performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype)
49
  distribution_strategy = distribute_utils.get_distribution_strategy(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
      distribution_strategy=params.runtime.distribution_strategy,
      all_reduce_alg=params.runtime.all_reduce_alg,
      num_gpus=params.runtime.num_gpus,
      tpu_address=params.runtime.tpu)
  with distribution_strategy.scope():
    task = task_factory.get_task(params.task, logging_dir=model_dir)

  train_lib.run_experiment(
      distribution_strategy=distribution_strategy,
      task=task,
      mode=FLAGS.mode,
      params=params,
      model_dir=model_dir)

Le Hou's avatar
Le Hou committed
64
65
  train_utils.save_gin_config(FLAGS.mode, model_dir)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
66
67
if __name__ == '__main__':
  tfm_flags.define_flags()
68
  flags.mark_flags_as_required(['experiment', 'mode', 'model_dir'])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
69
  app.run(main)