segmentation_losses.py 5.14 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
17
18
19
"""Losses used for segmentation models."""

# Import libraries
import tensorflow as tf

Abdullah Rashwan's avatar
Abdullah Rashwan committed
20
21
from official.modeling import tf_utils

Abdullah Rashwan's avatar
Abdullah Rashwan committed
22
23
24
25
26
27
EPSILON = 1e-5


class SegmentationLoss:
  """Semantic segmentation loss."""

Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
29
30
  def __init__(self, label_smoothing, class_weights, ignore_label,
               use_groundtruth_dimension, top_k_percent_pixels=1.0):
    self._top_k_percent_pixels = top_k_percent_pixels
Abdullah Rashwan's avatar
Abdullah Rashwan committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    self._class_weights = class_weights
    self._ignore_label = ignore_label
    self._use_groundtruth_dimension = use_groundtruth_dimension
    self._label_smoothing = label_smoothing

  def __call__(self, logits, labels):
    _, height, width, num_classes = logits.get_shape().as_list()

    if self._use_groundtruth_dimension:
      # TODO(arashwan): Test using align corners to match deeplab alignment.
      logits = tf.image.resize(
          logits, tf.shape(labels)[1:3],
          method=tf.image.ResizeMethod.BILINEAR)
    else:
      labels = tf.image.resize(
          labels, (height, width),
          method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

    valid_mask = tf.not_equal(labels, self._ignore_label)
    normalizer = tf.reduce_sum(tf.cast(valid_mask, tf.float32)) + EPSILON
    # Assign pixel with ignore label to class 0 (background). The loss on the
    # pixel will later be masked out.
    labels = tf.where(valid_mask, labels, tf.zeros_like(labels))

    labels = tf.squeeze(tf.cast(labels, tf.int32), axis=3)
    valid_mask = tf.squeeze(tf.cast(valid_mask, tf.float32), axis=3)
    onehot_labels = tf.one_hot(labels, num_classes)
    onehot_labels = onehot_labels * (
        1 - self._label_smoothing) + self._label_smoothing / num_classes
    cross_entropy_loss = tf.nn.softmax_cross_entropy_with_logits(
        labels=onehot_labels, logits=logits)

    if not self._class_weights:
      class_weights = [1] * num_classes
    else:
      class_weights = self._class_weights

    if num_classes != len(class_weights):
      raise ValueError(
          'Length of class_weights should be {}'.format(num_classes))

    weight_mask = tf.einsum('...y,y->...',
                            tf.one_hot(labels, num_classes, dtype=tf.float32),
                            tf.constant(class_weights, tf.float32))
    valid_mask *= weight_mask
    cross_entropy_loss *= tf.cast(valid_mask, tf.float32)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
77
78
79
80
81
82
83
84
85
86
87

    if self._top_k_percent_pixels >= 1.0:
      loss = tf.reduce_sum(cross_entropy_loss) / normalizer
    else:
      cross_entropy_loss = tf.reshape(cross_entropy_loss, shape=[-1])
      top_k_pixels = tf.cast(
          self._top_k_percent_pixels *
          tf.cast(tf.size(cross_entropy_loss), tf.float32), tf.int32)
      top_k_losses, _ = tf.math.top_k(
          cross_entropy_loss, k=top_k_pixels, sorted=True)
      normalizer = tf.reduce_sum(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
88
          tf.cast(tf.not_equal(top_k_losses, 0.0), tf.float32)) + EPSILON
Abdullah Rashwan's avatar
Abdullah Rashwan committed
89
90
      loss = tf.reduce_sum(top_k_losses) / normalizer

Abdullah Rashwan's avatar
Abdullah Rashwan committed
91
    return loss
Abdullah Rashwan's avatar
Abdullah Rashwan committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134


def get_actual_mask_scores(logits, labels, ignore_label):
  """Gets actual mask scores."""
  _, height, width, num_classes = logits.get_shape().as_list()
  batch_size = tf.shape(logits)[0]
  logits = tf.stop_gradient(logits)
  labels = tf.image.resize(
      labels, (height, width),
      method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
  predicted_labels = tf.argmax(logits, -1, output_type=tf.int32)
  flat_predictions = tf.reshape(predicted_labels, [batch_size, -1])
  flat_labels = tf.cast(tf.reshape(labels, [batch_size, -1]), tf.int32)

  one_hot_predictions = tf.one_hot(
      flat_predictions, num_classes, on_value=True, off_value=False)
  one_hot_labels = tf.one_hot(
      flat_labels, num_classes, on_value=True, off_value=False)
  keep_mask = tf.not_equal(flat_labels, ignore_label)
  keep_mask = tf.expand_dims(keep_mask, 2)

  overlap = tf.logical_and(one_hot_predictions, one_hot_labels)
  overlap = tf.logical_and(overlap, keep_mask)
  overlap = tf.reduce_sum(tf.cast(overlap, tf.float32), axis=1)
  union = tf.logical_or(one_hot_predictions, one_hot_labels)
  union = tf.logical_and(union, keep_mask)
  union = tf.reduce_sum(tf.cast(union, tf.float32), axis=1)
  actual_scores = tf.divide(overlap, tf.maximum(union, EPSILON))
  return actual_scores


class MaskScoringLoss:
  """Mask Scoring loss."""

  def __init__(self, ignore_label):
    self._ignore_label = ignore_label
    self._mse_loss = tf.keras.losses.MeanSquaredError(
        reduction=tf.keras.losses.Reduction.NONE)

  def __call__(self, predicted_scores, logits, labels):
    actual_scores = get_actual_mask_scores(logits, labels, self._ignore_label)
    loss = tf_utils.safe_mean(self._mse_loss(actual_scores, predicted_scores))
    return loss