common.py 3.88 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
"""Common configurations."""

17
import dataclasses
18
from typing import List, Optional
Fan Yang's avatar
Fan Yang committed
19

20
# Import libraries
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21

Fan Yang's avatar
Fan Yang committed
22
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
24
25
from official.modeling import hyperparams


26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
@dataclasses.dataclass
class TfExampleDecoder(hyperparams.Config):
  """A simple TF Example decoder config."""
  regenerate_source_id: bool = False
  mask_binarize_threshold: Optional[float] = None


@dataclasses.dataclass
class TfExampleDecoderLabelMap(hyperparams.Config):
  """TF Example decoder with label map config."""
  regenerate_source_id: bool = False
  mask_binarize_threshold: Optional[float] = None
  label_map: str = ''


@dataclasses.dataclass
class DataDecoder(hyperparams.OneOfConfig):
  """Data decoder config.

  Attributes:
    type: 'str', type of data decoder be used, one of the fields below.
    simple_decoder: simple TF Example decoder config.
    label_map_decoder: TF Example decoder with label map config.
  """
  type: Optional[str] = 'simple_decoder'
  simple_decoder: TfExampleDecoder = TfExampleDecoder()
  label_map_decoder: TfExampleDecoderLabelMap = TfExampleDecoderLabelMap()


55
56
57
58
59
60
61
@dataclasses.dataclass
class RandAugment(hyperparams.Config):
  """Configuration for RandAugment."""
  num_layers: int = 2
  magnitude: float = 10
  cutout_const: float = 40
  translate_const: float = 10
62
  magnitude_std: float = 0.0
Fan Yang's avatar
Fan Yang committed
63
  prob_to_apply: Optional[float] = None
64
  exclude_ops: List[str] = dataclasses.field(default_factory=list)
65
66
67
68
69
70
71
72
73
74


@dataclasses.dataclass
class AutoAugment(hyperparams.Config):
  """Configuration for AutoAugment."""
  augmentation_name: str = 'v0'
  cutout_const: float = 100
  translate_const: float = 250


75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
@dataclasses.dataclass
class RandomErasing(hyperparams.Config):
  """Configuration for RandomErasing."""
  probability: float = 0.25
  min_area: float = 0.02
  max_area: float = 1 / 3
  min_aspect: float = 0.3
  max_aspect = None
  min_count = 1
  max_count = 1
  trials = 10


@dataclasses.dataclass
class MixupAndCutmix(hyperparams.Config):
  """Configuration for MixupAndCutmix."""
  mixup_alpha: float = .8
  cutmix_alpha: float = 1.
  prob: float = 1.0
  switch_prob: float = 0.5
  label_smoothing: float = 0.1


98
99
100
101
102
103
104
105
106
107
108
109
110
111
@dataclasses.dataclass
class Augmentation(hyperparams.OneOfConfig):
  """Configuration for input data augmentation.

  Attributes:
    type: 'str', type of augmentation be used, one of the fields below.
    randaug: RandAugment config.
    autoaug: AutoAugment config.
  """
  type: Optional[str] = None
  randaug: RandAugment = RandAugment()
  autoaug: AutoAugment = AutoAugment()


Abdullah Rashwan's avatar
Abdullah Rashwan committed
112
113
114
@dataclasses.dataclass
class NormActivation(hyperparams.Config):
  activation: str = 'relu'
Pengchong Jin's avatar
Pengchong Jin committed
115
  use_sync_bn: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
116
117
  norm_momentum: float = 0.99
  norm_epsilon: float = 0.001
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
118
119
120


@dataclasses.dataclass
Fan Yang's avatar
Fan Yang committed
121
class PseudoLabelDataConfig(cfg.DataConfig):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
122
123
  """Psuedo Label input config for training."""
  input_path: str = ''
124
  data_ratio: float = 1.0  # Per-batch ratio of pseudo-labeled to labeled data.
Fan Yang's avatar
Fan Yang committed
125
126
127
128
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 10000
  cycle_length: int = 10
129
130
131
  aug_rand_hflip: bool = True
  aug_type: Optional[
      Augmentation] = None  # Choose from AutoAugment and RandAugment.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
132
  file_type: str = 'tfrecord'
Fan Yang's avatar
Fan Yang committed
133
134
135
136

  # Keep for backward compatibility.
  aug_policy: Optional[str] = None  # None, 'autoaug', or 'randaug'.
  randaug_magnitude: Optional[int] = 10