visualization_utils.py 42.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A set of functions that are used for visualization.

These functions often receive an image, perform some visualization on the image.
The functions do not return a value, instead they modify the image itself.

"""
22
import abc
23
import collections
24
25
26
# Set headless-friendly backend.
import matplotlib; matplotlib.use('Agg')  # pylint: disable=multiple-statements
import matplotlib.pyplot as plt  # pylint: disable=g-import-not-at-top
27
28
29
30
31
import numpy as np
import PIL.Image as Image
import PIL.ImageColor as ImageColor
import PIL.ImageDraw as ImageDraw
import PIL.ImageFont as ImageFont
32
import six
thess's avatar
thess committed
33
import tensorflow as tf
34

35
from object_detection.core import standard_fields as fields
36
from object_detection.utils import shape_utils
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

_TITLE_LEFT_MARGIN = 10
_TITLE_TOP_MARGIN = 10
STANDARD_COLORS = [
    'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige', 'Bisque',
    'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite',
    'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan',
    'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange',
    'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet',
    'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite',
    'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod',
    'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki',
    'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue',
    'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey',
    'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue',
    'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime',
    'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid',
    'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen',
    'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin',
    'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed',
    'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed',
    'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple',
    'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown',
    'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue',
    'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow',
    'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White',
    'WhiteSmoke', 'Yellow', 'YellowGreen'
]


67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
def _get_multiplier_for_color_randomness():
  """Returns a multiplier to get semi-random colors from successive indices.

  This function computes a prime number, p, in the range [2, 17] that:
  - is closest to len(STANDARD_COLORS) / 10
  - does not divide len(STANDARD_COLORS)

  If no prime numbers in that range satisfy the constraints, p is returned as 1.

  Once p is established, it can be used as a multiplier to select
  non-consecutive colors from STANDARD_COLORS:
  colors = [(p * i) % len(STANDARD_COLORS) for i in range(20)]
  """
  num_colors = len(STANDARD_COLORS)
  prime_candidates = [5, 7, 11, 13, 17]

  # Remove all prime candidates that divide the number of colors.
  prime_candidates = [p for p in prime_candidates if num_colors % p]
  if not prime_candidates:
    return 1

  # Return the closest prime number to num_colors / 10.
  abs_distance = [np.abs(num_colors / 10. - p) for p in prime_candidates]
  num_candidates = len(abs_distance)
  inds = [i for _, i in sorted(zip(abs_distance, range(num_candidates)))]
  return prime_candidates[inds[0]]


95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def save_image_array_as_png(image, output_path):
  """Saves an image (represented as a numpy array) to PNG.

  Args:
    image: a numpy array with shape [height, width, 3].
    output_path: path to which image should be written.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  with tf.gfile.Open(output_path, 'w') as fid:
    image_pil.save(fid, 'PNG')


def encode_image_array_as_png_str(image):
  """Encodes a numpy array into a PNG string.

  Args:
    image: a numpy array with shape [height, width, 3].

  Returns:
    PNG encoded image string.
  """
  image_pil = Image.fromarray(np.uint8(image))
117
  output = six.BytesIO()
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
  image_pil.save(output, format='PNG')
  png_string = output.getvalue()
  output.close()
  return png_string


def draw_bounding_box_on_image_array(image,
                                     ymin,
                                     xmin,
                                     ymax,
                                     xmax,
                                     color='red',
                                     thickness=4,
                                     display_str_list=(),
                                     use_normalized_coordinates=True):
  """Adds a bounding box to an image (numpy array).

135
136
137
  Bounding box coordinates can be specified in either absolute (pixel) or
  normalized coordinates by setting the use_normalized_coordinates argument.

138
139
  Args:
    image: a numpy array with shape [height, width, 3].
140
    ymin: ymin of bounding box.
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    xmin: xmin of bounding box.
    ymax: ymax of bounding box.
    xmax: xmax of bounding box.
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list: list of strings to display in box
                      (each to be shown on its own line).
    use_normalized_coordinates: If True (default), treat coordinates
      ymin, xmin, ymax, xmax as relative to the image.  Otherwise treat
      coordinates as absolute.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color,
                             thickness, display_str_list,
                             use_normalized_coordinates)
  np.copyto(image, np.array(image_pil))


def draw_bounding_box_on_image(image,
                               ymin,
                               xmin,
                               ymax,
                               xmax,
                               color='red',
                               thickness=4,
                               display_str_list=(),
                               use_normalized_coordinates=True):
  """Adds a bounding box to an image.

170
171
172
  Bounding box coordinates can be specified in either absolute (pixel) or
  normalized coordinates by setting the use_normalized_coordinates argument.

173
174
  Each string in display_str_list is displayed on a separate line above the
  bounding box in black text on a rectangle filled with the input 'color'.
175
176
  If the top of the bounding box extends to the edge of the image, the strings
  are displayed below the bounding box.
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

  Args:
    image: a PIL.Image object.
    ymin: ymin of bounding box.
    xmin: xmin of bounding box.
    ymax: ymax of bounding box.
    xmax: xmax of bounding box.
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list: list of strings to display in box
                      (each to be shown on its own line).
    use_normalized_coordinates: If True (default), treat coordinates
      ymin, xmin, ymax, xmax as relative to the image.  Otherwise treat
      coordinates as absolute.
  """
  draw = ImageDraw.Draw(image)
  im_width, im_height = image.size
  if use_normalized_coordinates:
    (left, right, top, bottom) = (xmin * im_width, xmax * im_width,
                                  ymin * im_height, ymax * im_height)
  else:
    (left, right, top, bottom) = (xmin, xmax, ymin, ymax)
  draw.line([(left, top), (left, bottom), (right, bottom),
             (right, top), (left, top)], width=thickness, fill=color)
201
202
203
204
  try:
    font = ImageFont.truetype('arial.ttf', 24)
  except IOError:
    font = ImageFont.load_default()
205

206
207
208
209
210
211
212
213
214
215
216
  # If the total height of the display strings added to the top of the bounding
  # box exceeds the top of the image, stack the strings below the bounding box
  # instead of above.
  display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
  # Each display_str has a top and bottom margin of 0.05x.
  total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)

  if top > total_display_str_height:
    text_bottom = top
  else:
    text_bottom = bottom + total_display_str_height
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
  # Reverse list and print from bottom to top.
  for display_str in display_str_list[::-1]:
    text_width, text_height = font.getsize(display_str)
    margin = np.ceil(0.05 * text_height)
    draw.rectangle(
        [(left, text_bottom - text_height - 2 * margin), (left + text_width,
                                                          text_bottom)],
        fill=color)
    draw.text(
        (left + margin, text_bottom - text_height - margin),
        display_str,
        fill='black',
        font=font)
    text_bottom -= text_height - 2 * margin


def draw_bounding_boxes_on_image_array(image,
                                       boxes,
                                       color='red',
                                       thickness=4,
                                       display_str_list_list=()):
  """Draws bounding boxes on image (numpy array).

  Args:
    image: a numpy array object.
    boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
           The coordinates are in normalized format between [0, 1].
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list_list: list of list of strings.
                           a list of strings for each bounding box.
                           The reason to pass a list of strings for a
                           bounding box is that it might contain
                           multiple labels.

  Raises:
    ValueError: if boxes is not a [N, 4] array
  """
  image_pil = Image.fromarray(image)
  draw_bounding_boxes_on_image(image_pil, boxes, color, thickness,
                               display_str_list_list)
  np.copyto(image, np.array(image_pil))


def draw_bounding_boxes_on_image(image,
                                 boxes,
                                 color='red',
                                 thickness=4,
                                 display_str_list_list=()):
  """Draws bounding boxes on image.

  Args:
    image: a PIL.Image object.
    boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
           The coordinates are in normalized format between [0, 1].
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list_list: list of list of strings.
                           a list of strings for each bounding box.
                           The reason to pass a list of strings for a
                           bounding box is that it might contain
                           multiple labels.

  Raises:
    ValueError: if boxes is not a [N, 4] array
  """
  boxes_shape = boxes.shape
  if not boxes_shape:
    return
  if len(boxes_shape) != 2 or boxes_shape[1] != 4:
    raise ValueError('Input must be of size [N, 4]')
  for i in range(boxes_shape[0]):
    display_str_list = ()
    if display_str_list_list:
      display_str_list = display_str_list_list[i]
    draw_bounding_box_on_image(image, boxes[i, 0], boxes[i, 1], boxes[i, 2],
                               boxes[i, 3], color, thickness, display_str_list)


296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
def create_visualization_fn(category_index, include_masks=False,
                            include_keypoints=False, include_track_ids=False,
                            **kwargs):
  """Constructs a visualization function that can be wrapped in a py_func.

  py_funcs only accept positional arguments. This function returns a suitable
  function with the correct positional argument mapping. The positional
  arguments in order are:
  0: image
  1: boxes
  2: classes
  3: scores
  [4-6]: masks (optional)
  [4-6]: keypoints (optional)
  [4-6]: track_ids (optional)

  -- Example 1 --
  vis_only_masks_fn = create_visualization_fn(category_index,
    include_masks=True, include_keypoints=False, include_track_ids=False,
    **kwargs)
  image = tf.py_func(vis_only_masks_fn,
                     inp=[image, boxes, classes, scores, masks],
                     Tout=tf.uint8)

  -- Example 2 --
  vis_masks_and_track_ids_fn = create_visualization_fn(category_index,
    include_masks=True, include_keypoints=False, include_track_ids=True,
    **kwargs)
  image = tf.py_func(vis_masks_and_track_ids_fn,
                     inp=[image, boxes, classes, scores, masks, track_ids],
                     Tout=tf.uint8)
327

328
329
330
331
332
333
334
335
336
337
338
  Args:
    category_index: a dict that maps integer ids to category dicts. e.g.
      {1: {1: 'dog'}, 2: {2: 'cat'}, ...}
    include_masks: Whether masks should be expected as a positional argument in
      the returned function.
    include_keypoints: Whether keypoints should be expected as a positional
      argument in the returned function.
    include_track_ids: Whether track ids should be expected as a positional
      argument in the returned function.
    **kwargs: Additional kwargs that will be passed to
      visualize_boxes_and_labels_on_image_array.
339

340
341
342
  Returns:
    Returns a function that only takes tensors as positional arguments.
  """
343

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
  def visualization_py_func_fn(*args):
    """Visualization function that can be wrapped in a tf.py_func.

    Args:
      *args: First 4 positional arguments must be:
        image - uint8 numpy array with shape (img_height, img_width, 3).
        boxes - a numpy array of shape [N, 4].
        classes - a numpy array of shape [N].
        scores - a numpy array of shape [N] or None.
        -- Optional positional arguments --
        instance_masks - a numpy array of shape [N, image_height, image_width].
        keypoints - a numpy array of shape [N, num_keypoints, 2].
        track_ids - a numpy array of shape [N] with unique track ids.

    Returns:
      uint8 numpy array with shape (img_height, img_width, 3) with overlaid
      boxes.
    """
    image = args[0]
    boxes = args[1]
    classes = args[2]
    scores = args[3]
    masks = keypoints = track_ids = None
    pos_arg_ptr = 4  # Positional argument for first optional tensor (masks).
    if include_masks:
      masks = args[pos_arg_ptr]
      pos_arg_ptr += 1
    if include_keypoints:
      keypoints = args[pos_arg_ptr]
      pos_arg_ptr += 1
    if include_track_ids:
      track_ids = args[pos_arg_ptr]

    return visualize_boxes_and_labels_on_image_array(
        image,
        boxes,
        classes,
        scores,
        category_index=category_index,
        instance_masks=masks,
        keypoints=keypoints,
        track_ids=track_ids,
        **kwargs)
  return visualization_py_func_fn
388
389


390
391
392
393
394
395
396
397
398
399
def _resize_original_image(image, image_shape):
  image = tf.expand_dims(image, 0)
  image = tf.image.resize_images(
      image,
      image_shape,
      method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
      align_corners=True)
  return tf.cast(tf.squeeze(image, 0), tf.uint8)


400
401
402
403
404
def draw_bounding_boxes_on_image_tensors(images,
                                         boxes,
                                         classes,
                                         scores,
                                         category_index,
405
406
                                         original_image_spatial_shape=None,
                                         true_image_shape=None,
407
408
                                         instance_masks=None,
                                         keypoints=None,
409
                                         track_ids=None,
410
                                         max_boxes_to_draw=20,
411
412
                                         min_score_thresh=0.2,
                                         use_normalized_coordinates=True):
413
  """Draws bounding boxes, masks, and keypoints on batch of image tensors.
414
415

  Args:
416
    images: A 4D uint8 image tensor of shape [N, H, W, C]. If C > 3, additional
417
418
      channels will be ignored. If C = 1, then we convert the images to RGB
      images.
419
420
421
422
423
424
    boxes: [N, max_detections, 4] float32 tensor of detection boxes.
    classes: [N, max_detections] int tensor of detection classes. Note that
      classes are 1-indexed.
    scores: [N, max_detections] float32 tensor of detection scores.
    category_index: a dict that maps integer ids to category dicts. e.g.
      {1: {1: 'dog'}, 2: {2: 'cat'}, ...}
425
426
427
428
    original_image_spatial_shape: [N, 2] tensor containing the spatial size of
      the original image.
    true_image_shape: [N, 3] tensor containing the spatial size of unpadded
      original_image.
429
430
431
432
    instance_masks: A 4D uint8 tensor of shape [N, max_detection, H, W] with
      instance masks.
    keypoints: A 4D float32 tensor of shape [N, max_detection, num_keypoints, 2]
      with keypoints.
433
434
435
    track_ids: [N, max_detections] int32 tensor of unique tracks ids (i.e.
      instance ids for each object). If provided, the color-coding of boxes is
      dictated by these ids, and not classes.
436
437
    max_boxes_to_draw: Maximum number of boxes to draw on an image. Default 20.
    min_score_thresh: Minimum score threshold for visualization. Default 0.2.
438
439
440
    use_normalized_coordinates: Whether to assume boxes and kepoints are in
      normalized coordinates (as opposed to absolute coordiantes).
      Default is True.
441
442
443
444

  Returns:
    4D image tensor of type uint8, with boxes drawn on top.
  """
445
  # Additional channels are being ignored.
446
447
448
449
  if images.shape[3] > 3:
    images = images[:, :, :, 0:3]
  elif images.shape[3] == 1:
    images = tf.image.grayscale_to_rgb(images)
450
  visualization_keyword_args = {
451
      'use_normalized_coordinates': use_normalized_coordinates,
452
453
454
455
456
      'max_boxes_to_draw': max_boxes_to_draw,
      'min_score_thresh': min_score_thresh,
      'agnostic_mode': False,
      'line_thickness': 4
  }
457
458
459
460
461
462
463
464
  if true_image_shape is None:
    true_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 3])
  else:
    true_shapes = true_image_shape
  if original_image_spatial_shape is None:
    original_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 2])
  else:
    original_shapes = original_image_spatial_shape
465

466
467
468
469
470
471
472
473
474
475
476
477
478
479
  visualize_boxes_fn = create_visualization_fn(
      category_index,
      include_masks=instance_masks is not None,
      include_keypoints=keypoints is not None,
      include_track_ids=track_ids is not None,
      **visualization_keyword_args)

  elems = [true_shapes, original_shapes, images, boxes, classes, scores]
  if instance_masks is not None:
    elems.append(instance_masks)
  if keypoints is not None:
    elems.append(keypoints)
  if track_ids is not None:
    elems.append(track_ids)
480

481
  def draw_boxes(image_and_detections):
482
    """Draws boxes on image."""
483
484
485
486
487
488
489
490
491
    true_shape = image_and_detections[0]
    original_shape = image_and_detections[1]
    if true_image_shape is not None:
      image = shape_utils.pad_or_clip_nd(image_and_detections[2],
                                         [true_shape[0], true_shape[1], 3])
    if original_image_spatial_shape is not None:
      image_and_detections[2] = _resize_original_image(image, original_shape)

    image_with_boxes = tf.py_func(visualize_boxes_fn, image_and_detections[2:],
492
                                  tf.uint8)
493
494
    return image_with_boxes

495
  images = tf.map_fn(draw_boxes, elems, dtype=tf.uint8, back_prop=False)
496
497
498
  return images


499
500
501
def draw_side_by_side_evaluation_image(eval_dict,
                                       category_index,
                                       max_boxes_to_draw=20,
502
503
                                       min_score_thresh=0.2,
                                       use_normalized_coordinates=True):
504
505
506
507
508
509
510
  """Creates a side-by-side image with detections and groundtruth.

  Bounding boxes (and instance masks, if available) are visualized on both
  subimages.

  Args:
    eval_dict: The evaluation dictionary returned by
511
      eval_util.result_dict_for_batched_example() or
512
513
514
515
      eval_util.result_dict_for_single_example().
    category_index: A category index (dictionary) produced from a labelmap.
    max_boxes_to_draw: The maximum number of boxes to draw for detections.
    min_score_thresh: The minimum score threshold for showing detections.
516
517
518
    use_normalized_coordinates: Whether to assume boxes and kepoints are in
      normalized coordinates (as opposed to absolute coordiantes).
      Default is True.
519
520

  Returns:
521
522
523
    A list of [1, H, 2 * W, C] uint8 tensor. The subimage on the left
      corresponds to detections, while the subimage on the right corresponds to
      groundtruth.
524
525
526
  """
  detection_fields = fields.DetectionResultFields()
  input_data_fields = fields.InputDataFields()
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

  images_with_detections_list = []

  # Add the batch dimension if the eval_dict is for single example.
  if len(eval_dict[detection_fields.detection_classes].shape) == 1:
    for key in eval_dict:
      if key != input_data_fields.original_image:
        eval_dict[key] = tf.expand_dims(eval_dict[key], 0)

  for indx in range(eval_dict[input_data_fields.original_image].shape[0]):
    instance_masks = None
    if detection_fields.detection_masks in eval_dict:
      instance_masks = tf.cast(
          tf.expand_dims(
              eval_dict[detection_fields.detection_masks][indx], axis=0),
          tf.uint8)
    keypoints = None
    if detection_fields.detection_keypoints in eval_dict:
      keypoints = tf.expand_dims(
          eval_dict[detection_fields.detection_keypoints][indx], axis=0)
    groundtruth_instance_masks = None
    if input_data_fields.groundtruth_instance_masks in eval_dict:
      groundtruth_instance_masks = tf.cast(
          tf.expand_dims(
              eval_dict[input_data_fields.groundtruth_instance_masks][indx],
              axis=0), tf.uint8)

    images_with_detections = draw_bounding_boxes_on_image_tensors(
555
        tf.expand_dims(
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
            eval_dict[input_data_fields.original_image][indx], axis=0),
        tf.expand_dims(
            eval_dict[detection_fields.detection_boxes][indx], axis=0),
        tf.expand_dims(
            eval_dict[detection_fields.detection_classes][indx], axis=0),
        tf.expand_dims(
            eval_dict[detection_fields.detection_scores][indx], axis=0),
        category_index,
        original_image_spatial_shape=tf.expand_dims(
            eval_dict[input_data_fields.original_image_spatial_shape][indx],
            axis=0),
        true_image_shape=tf.expand_dims(
            eval_dict[input_data_fields.true_image_shape][indx], axis=0),
        instance_masks=instance_masks,
        keypoints=keypoints,
        max_boxes_to_draw=max_boxes_to_draw,
        min_score_thresh=min_score_thresh,
        use_normalized_coordinates=use_normalized_coordinates)
    images_with_groundtruth = draw_bounding_boxes_on_image_tensors(
        tf.expand_dims(
            eval_dict[input_data_fields.original_image][indx], axis=0),
        tf.expand_dims(
            eval_dict[input_data_fields.groundtruth_boxes][indx], axis=0),
        tf.expand_dims(
            eval_dict[input_data_fields.groundtruth_classes][indx], axis=0),
        tf.expand_dims(
            tf.ones_like(
                eval_dict[input_data_fields.groundtruth_classes][indx],
                dtype=tf.float32),
            axis=0),
        category_index,
        original_image_spatial_shape=tf.expand_dims(
            eval_dict[input_data_fields.original_image_spatial_shape][indx],
            axis=0),
        true_image_shape=tf.expand_dims(
            eval_dict[input_data_fields.true_image_shape][indx], axis=0),
        instance_masks=groundtruth_instance_masks,
        keypoints=None,
        max_boxes_to_draw=None,
        min_score_thresh=0.0,
        use_normalized_coordinates=use_normalized_coordinates)
    images_with_detections_list.append(
        tf.concat([images_with_detections, images_with_groundtruth], axis=2))
  return images_with_detections_list
600
601


602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
def draw_keypoints_on_image_array(image,
                                  keypoints,
                                  color='red',
                                  radius=2,
                                  use_normalized_coordinates=True):
  """Draws keypoints on an image (numpy array).

  Args:
    image: a numpy array with shape [height, width, 3].
    keypoints: a numpy array with shape [num_keypoints, 2].
    color: color to draw the keypoints with. Default is red.
    radius: keypoint radius. Default value is 2.
    use_normalized_coordinates: if True (default), treat keypoint values as
      relative to the image.  Otherwise treat them as absolute.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  draw_keypoints_on_image(image_pil, keypoints, color, radius,
                          use_normalized_coordinates)
  np.copyto(image, np.array(image_pil))


def draw_keypoints_on_image(image,
                            keypoints,
                            color='red',
                            radius=2,
                            use_normalized_coordinates=True):
  """Draws keypoints on an image.

  Args:
    image: a PIL.Image object.
    keypoints: a numpy array with shape [num_keypoints, 2].
    color: color to draw the keypoints with. Default is red.
    radius: keypoint radius. Default value is 2.
    use_normalized_coordinates: if True (default), treat keypoint values as
      relative to the image.  Otherwise treat them as absolute.
  """
  draw = ImageDraw.Draw(image)
  im_width, im_height = image.size
  keypoints_x = [k[1] for k in keypoints]
  keypoints_y = [k[0] for k in keypoints]
  if use_normalized_coordinates:
    keypoints_x = tuple([im_width * x for x in keypoints_x])
    keypoints_y = tuple([im_height * y for y in keypoints_y])
  for keypoint_x, keypoint_y in zip(keypoints_x, keypoints_y):
    draw.ellipse([(keypoint_x - radius, keypoint_y - radius),
                  (keypoint_x + radius, keypoint_y + radius)],
                 outline=color, fill=color)


651
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
652
653
654
655
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
656
657
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
658
    color: color to draw the keypoints with. Default is red.
659
    alpha: transparency value between 0 and 1. (default: 0.4)
660
661
662
663
664
665

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
666
667
668
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
669
    raise ValueError('`mask` elements should be in [0, 1]')
670
671
672
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
673
674
675
676
677
678
679
680
681
682
683
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB')))


684
685
686
687
688
689
690
691
692
def visualize_boxes_and_labels_on_image_array(
    image,
    boxes,
    classes,
    scores,
    category_index,
    instance_masks=None,
    instance_boundaries=None,
    keypoints=None,
693
    track_ids=None,
694
695
696
697
698
699
700
    use_normalized_coordinates=False,
    max_boxes_to_draw=20,
    min_score_thresh=.5,
    agnostic_mode=False,
    line_thickness=4,
    groundtruth_box_visualization_color='black',
    skip_scores=False,
701
702
    skip_labels=False,
    skip_track_ids=False):
703
704
705
706
  """Overlay labeled boxes on an image with formatted scores and label names.

  This function groups boxes that correspond to the same location
  and creates a display string for each detection and overlays these
707
708
  on the image. Note that this function modifies the image in place, and returns
  that same image.
709
710
711
712

  Args:
    image: uint8 numpy array with shape (img_height, img_width, 3)
    boxes: a numpy array of shape [N, 4]
713
714
    classes: a numpy array of shape [N]. Note that class indices are 1-based,
      and match the keys in the label map.
715
716
717
718
719
    scores: a numpy array of shape [N] or None.  If scores=None, then
      this function assumes that the boxes to be plotted are groundtruth
      boxes and plot all boxes as black with no classes or scores.
    category_index: a dict containing category dictionaries (each holding
      category index `id` and category name `name`) keyed by category indices.
720
721
722
723
    instance_masks: a numpy array of shape [N, image_height, image_width] with
      values ranging between 0 and 1, can be None.
    instance_boundaries: a numpy array of shape [N, image_height, image_width]
      with values ranging between 0 and 1, can be None.
724
725
    keypoints: a numpy array of shape [N, num_keypoints, 2], can
      be None
726
727
728
    track_ids: a numpy array of shape [N] with unique track ids. If provided,
      color-coding of boxes will be determined by these ids, and not the class
      indices.
729
730
731
732
733
734
735
736
737
    use_normalized_coordinates: whether boxes is to be interpreted as
      normalized coordinates or not.
    max_boxes_to_draw: maximum number of boxes to visualize.  If None, draw
      all boxes.
    min_score_thresh: minimum score threshold for a box to be visualized
    agnostic_mode: boolean (default: False) controlling whether to evaluate in
      class-agnostic mode or not.  This mode will display scores but ignore
      classes.
    line_thickness: integer (default: 4) controlling line width of the boxes.
738
739
740
741
    groundtruth_box_visualization_color: box color for visualizing groundtruth
      boxes
    skip_scores: whether to skip score when drawing a single detection
    skip_labels: whether to skip label when drawing a single detection
742
    skip_track_ids: whether to skip track id when drawing a single detection
743
744
745

  Returns:
    uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes.
746
747
748
749
750
751
  """
  # Create a display string (and color) for every box location, group any boxes
  # that correspond to the same location.
  box_to_display_str_map = collections.defaultdict(list)
  box_to_color_map = collections.defaultdict(str)
  box_to_instance_masks_map = {}
752
  box_to_instance_boundaries_map = {}
753
  box_to_keypoints_map = collections.defaultdict(list)
754
  box_to_track_ids_map = {}
755
756
757
758
759
760
761
  if not max_boxes_to_draw:
    max_boxes_to_draw = boxes.shape[0]
  for i in range(min(max_boxes_to_draw, boxes.shape[0])):
    if scores is None or scores[i] > min_score_thresh:
      box = tuple(boxes[i].tolist())
      if instance_masks is not None:
        box_to_instance_masks_map[box] = instance_masks[i]
762
763
      if instance_boundaries is not None:
        box_to_instance_boundaries_map[box] = instance_boundaries[i]
764
765
      if keypoints is not None:
        box_to_keypoints_map[box].extend(keypoints[i])
766
767
      if track_ids is not None:
        box_to_track_ids_map[box] = track_ids[i]
768
      if scores is None:
769
        box_to_color_map[box] = groundtruth_box_visualization_color
770
      else:
771
772
773
774
775
776
777
778
779
780
781
        display_str = ''
        if not skip_labels:
          if not agnostic_mode:
            if classes[i] in category_index.keys():
              class_name = category_index[classes[i]]['name']
            else:
              class_name = 'N/A'
            display_str = str(class_name)
        if not skip_scores:
          if not display_str:
            display_str = '{}%'.format(int(100*scores[i]))
782
          else:
783
            display_str = '{}: {}%'.format(display_str, int(100*scores[i]))
784
785
786
787
788
        if not skip_track_ids and track_ids is not None:
          if not display_str:
            display_str = 'ID {}'.format(track_ids[i])
          else:
            display_str = '{}: ID {}'.format(display_str, track_ids[i])
789
790
791
        box_to_display_str_map[box].append(display_str)
        if agnostic_mode:
          box_to_color_map[box] = 'DarkOrange'
792
793
794
795
        elif track_ids is not None:
          prime_multipler = _get_multiplier_for_color_randomness()
          box_to_color_map[box] = STANDARD_COLORS[
              (prime_multipler * track_ids[i]) % len(STANDARD_COLORS)]
796
797
798
799
800
        else:
          box_to_color_map[box] = STANDARD_COLORS[
              classes[i] % len(STANDARD_COLORS)]

  # Draw all boxes onto image.
801
  for box, color in box_to_color_map.items():
802
803
804
805
806
807
808
    ymin, xmin, ymax, xmax = box
    if instance_masks is not None:
      draw_mask_on_image_array(
          image,
          box_to_instance_masks_map[box],
          color=color
      )
809
810
811
812
813
814
815
    if instance_boundaries is not None:
      draw_mask_on_image_array(
          image,
          box_to_instance_boundaries_map[box],
          color='red',
          alpha=1.0
      )
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
    draw_bounding_box_on_image_array(
        image,
        ymin,
        xmin,
        ymax,
        xmax,
        color=color,
        thickness=line_thickness,
        display_str_list=box_to_display_str_map[box],
        use_normalized_coordinates=use_normalized_coordinates)
    if keypoints is not None:
      draw_keypoints_on_image_array(
          image,
          box_to_keypoints_map[box],
          color=color,
          radius=line_thickness / 2,
          use_normalized_coordinates=use_normalized_coordinates)
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861

  return image


def add_cdf_image_summary(values, name):
  """Adds a tf.summary.image for a CDF plot of the values.

  Normalizes `values` such that they sum to 1, plots the cumulative distribution
  function and creates a tf image summary.

  Args:
    values: a 1-D float32 tensor containing the values.
    name: name for the image summary.
  """
  def cdf_plot(values):
    """Numpy function to plot CDF."""
    normalized_values = values / np.sum(values)
    sorted_values = np.sort(normalized_values)
    cumulative_values = np.cumsum(sorted_values)
    fraction_of_examples = (np.arange(cumulative_values.size, dtype=np.float32)
                            / cumulative_values.size)
    fig = plt.figure(frameon=False)
    ax = fig.add_subplot('111')
    ax.plot(fraction_of_examples, cumulative_values)
    ax.set_ylabel('cumulative normalized values')
    ax.set_xlabel('fraction of examples')
    fig.canvas.draw()
    width, height = fig.get_size_inches() * fig.get_dpi()
    image = np.fromstring(fig.canvas.tostring_rgb(), dtype='uint8').reshape(
862
        1, int(height), int(width), 3)
863
864
865
    return image
  cdf_plot = tf.py_func(cdf_plot, [values], tf.uint8)
  tf.summary.image(name, cdf_plot)
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894


def add_hist_image_summary(values, bins, name):
  """Adds a tf.summary.image for a histogram plot of the values.

  Plots the histogram of values and creates a tf image summary.

  Args:
    values: a 1-D float32 tensor containing the values.
    bins: bin edges which will be directly passed to np.histogram.
    name: name for the image summary.
  """

  def hist_plot(values, bins):
    """Numpy function to plot hist."""
    fig = plt.figure(frameon=False)
    ax = fig.add_subplot('111')
    y, x = np.histogram(values, bins=bins)
    ax.plot(x[:-1], y)
    ax.set_ylabel('count')
    ax.set_xlabel('value')
    fig.canvas.draw()
    width, height = fig.get_size_inches() * fig.get_dpi()
    image = np.fromstring(
        fig.canvas.tostring_rgb(), dtype='uint8').reshape(
            1, int(height), int(width), 3)
    return image
  hist_plot = tf.py_func(hist_plot, [values, bins], tf.uint8)
  tf.summary.image(name, hist_plot)
895
896
897
898
899
900
901
902
903
904
905


class EvalMetricOpsVisualization(object):
  """Abstract base class responsible for visualizations during evaluation.

  Currently, summary images are not run during evaluation. One way to produce
  evaluation images in Tensorboard is to provide tf.summary.image strings as
  `value_ops` in tf.estimator.EstimatorSpec's `eval_metric_ops`. This class is
  responsible for accruing images (with overlaid detections and groundtruth)
  and returning a dictionary that can be passed to `eval_metric_ops`.
  """
906
  __metaclass__ = abc.ABCMeta
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

  def __init__(self,
               category_index,
               max_examples_to_draw=5,
               max_boxes_to_draw=20,
               min_score_thresh=0.2,
               use_normalized_coordinates=True,
               summary_name_prefix='evaluation_image'):
    """Creates an EvalMetricOpsVisualization.

    Args:
      category_index: A category index (dictionary) produced from a labelmap.
      max_examples_to_draw: The maximum number of example summaries to produce.
      max_boxes_to_draw: The maximum number of boxes to draw for detections.
      min_score_thresh: The minimum score threshold for showing detections.
      use_normalized_coordinates: Whether to assume boxes and kepoints are in
        normalized coordinates (as opposed to absolute coordiantes).
        Default is True.
      summary_name_prefix: A string prefix for each image summary.
    """

    self._category_index = category_index
    self._max_examples_to_draw = max_examples_to_draw
    self._max_boxes_to_draw = max_boxes_to_draw
    self._min_score_thresh = min_score_thresh
    self._use_normalized_coordinates = use_normalized_coordinates
    self._summary_name_prefix = summary_name_prefix
    self._images = []

  def clear(self):
    self._images = []

  def add_images(self, images):
    """Store a list of images, each with shape [1, H, W, C]."""
    if len(self._images) >= self._max_examples_to_draw:
      return

    # Store images and clip list if necessary.
    self._images.extend(images)
    if len(self._images) > self._max_examples_to_draw:
      self._images[self._max_examples_to_draw:] = []

  def get_estimator_eval_metric_ops(self, eval_dict):
    """Returns metric ops for use in tf.estimator.EstimatorSpec.

    Args:
      eval_dict: A dictionary that holds an image, groundtruth, and detections
954
955
956
        for a batched example. Note that, we use only the first example for
        visualization. See eval_util.result_dict_for_batched_example() for a
        convenient method for constructing such a dictionary. The dictionary
957
        contains
958
959
960
961
962
963
964
965
966
        fields.InputDataFields.original_image: [batch_size, H, W, 3] image.
        fields.InputDataFields.original_image_spatial_shape: [batch_size, 2]
          tensor containing the size of the original image.
        fields.InputDataFields.true_image_shape: [batch_size, 3]
          tensor containing the spatial size of the upadded original image.
        fields.InputDataFields.groundtruth_boxes - [batch_size, num_boxes, 4]
          float32 tensor with groundtruth boxes in range [0.0, 1.0].
        fields.InputDataFields.groundtruth_classes - [batch_size, num_boxes]
          int64 tensor with 1-indexed groundtruth classes.
967
        fields.InputDataFields.groundtruth_instance_masks - (optional)
968
969
970
971
972
973
974
975
976
977
          [batch_size, num_boxes, H, W] int64 tensor with instance masks.
        fields.DetectionResultFields.detection_boxes - [batch_size,
          max_num_boxes, 4] float32 tensor with detection boxes in range [0.0,
          1.0].
        fields.DetectionResultFields.detection_classes - [batch_size,
          max_num_boxes] int64 tensor with 1-indexed detection classes.
        fields.DetectionResultFields.detection_scores - [batch_size,
          max_num_boxes] float32 tensor with detection scores.
        fields.DetectionResultFields.detection_masks - (optional) [batch_size,
          max_num_boxes, H, W] float32 tensor of binarized masks.
978
        fields.DetectionResultFields.detection_keypoints - (optional)
979
980
          [batch_size, max_num_boxes, num_keypoints, 2] float32 tensor with
          keypoints.
981
982
983
984
985
986
987
988

    Returns:
      A dictionary of image summary names to tuple of (value_op, update_op). The
      `update_op` is the same for all items in the dictionary, and is
      responsible for saving a single side-by-side image with detections and
      groundtruth. Each `value_op` holds the tf.summary.image string for a given
      image.
    """
989
990
    if self._max_examples_to_draw == 0:
      return {}
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
    images = self.images_from_evaluation_dict(eval_dict)

    def get_images():
      """Returns a list of images, padded to self._max_images_to_draw."""
      images = self._images
      while len(images) < self._max_examples_to_draw:
        images.append(np.array(0, dtype=np.uint8))
      self.clear()
      return images

    def image_summary_or_default_string(summary_name, image):
      """Returns image summaries for non-padded elements."""
      return tf.cond(
          tf.equal(tf.size(tf.shape(image)), 4),
          lambda: tf.summary.image(summary_name, image),
          lambda: tf.constant(''))

1008
    update_op = tf.py_func(self.add_images, [[images[0]]], [])
1009
1010
1011
1012
1013
1014
1015
1016
1017
    image_tensors = tf.py_func(
        get_images, [], [tf.uint8] * self._max_examples_to_draw)
    eval_metric_ops = {}
    for i, image in enumerate(image_tensors):
      summary_name = self._summary_name_prefix + '/' + str(i)
      value_op = image_summary_or_default_string(summary_name, image)
      eval_metric_ops[summary_name] = (value_op, update_op)
    return eval_metric_ops

1018
  @abc.abstractmethod
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
  def images_from_evaluation_dict(self, eval_dict):
    """Converts evaluation dictionary into a list of image tensors.

    To be overridden by implementations.

    Args:
      eval_dict: A dictionary with all the necessary information for producing
        visualizations.

    Returns:
      A list of [1, H, W, C] uint8 tensors.
    """
    raise NotImplementedError


class VisualizeSingleFrameDetections(EvalMetricOpsVisualization):
  """Class responsible for single-frame object detection visualizations."""

  def __init__(self,
               category_index,
               max_examples_to_draw=5,
               max_boxes_to_draw=20,
               min_score_thresh=0.2,
               use_normalized_coordinates=True,
               summary_name_prefix='Detections_Left_Groundtruth_Right'):
    super(VisualizeSingleFrameDetections, self).__init__(
        category_index=category_index,
        max_examples_to_draw=max_examples_to_draw,
        max_boxes_to_draw=max_boxes_to_draw,
        min_score_thresh=min_score_thresh,
        use_normalized_coordinates=use_normalized_coordinates,
        summary_name_prefix=summary_name_prefix)

  def images_from_evaluation_dict(self, eval_dict):
1053
1054
1055
    return draw_side_by_side_evaluation_image(
        eval_dict, self._category_index, self._max_boxes_to_draw,
        self._min_score_thresh, self._use_normalized_coordinates)