ops.py 48.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A module for helper tensorflow ops."""
17
import collections
18
import math
19
import six
20
21
22
23

import tensorflow as tf

from object_detection.core import standard_fields as fields
24
from object_detection.utils import shape_utils
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from object_detection.utils import static_shape


def expanded_shape(orig_shape, start_dim, num_dims):
  """Inserts multiple ones into a shape vector.

  Inserts an all-1 vector of length num_dims at position start_dim into a shape.
  Can be combined with tf.reshape to generalize tf.expand_dims.

  Args:
    orig_shape: the shape into which the all-1 vector is added (int32 vector)
    start_dim: insertion position (int scalar)
    num_dims: length of the inserted all-1 vector (int scalar)
  Returns:
    An int32 vector of length tf.size(orig_shape) + num_dims.
  """
  with tf.name_scope('ExpandedShape'):
    start_dim = tf.expand_dims(start_dim, 0)  # scalar to rank-1
    before = tf.slice(orig_shape, [0], start_dim)
    add_shape = tf.ones(tf.reshape(num_dims, [1]), dtype=tf.int32)
    after = tf.slice(orig_shape, start_dim, [-1])
    new_shape = tf.concat([before, add_shape, after], 0)
    return new_shape


def normalized_to_image_coordinates(normalized_boxes, image_shape,
                                    parallel_iterations=32):
  """Converts a batch of boxes from normal to image coordinates.

  Args:
55
56
57
58
    normalized_boxes: a tensor of shape [None, num_boxes, 4] in
      normalized coordinates. The dtype of this tensor must support tf.mul.
    image_shape: a tensor of shape [4] containing the image shape, with same
      dtype as `normalized_boxes`.
59
60
61
    parallel_iterations: parallelism for the map_fn op.

  Returns:
62
63
64
    absolute_boxes: a tensor of shape [None, num_boxes, 4] containing
      the boxes in image coordinates, with same
      dtype as `normalized_boxes`.
65
  """
66
67
  x_scale = tf.cast(image_shape[2], normalized_boxes.dtype)
  y_scale = tf.cast(image_shape[1], normalized_boxes.dtype)
68
  def _to_absolute_coordinates(normalized_boxes):
69
70
71
72
73
74
75
76
    y_min, x_min, y_max, x_max = tf.split(
        value=normalized_boxes, num_or_size_splits=4, axis=1)
    y_min = y_scale * y_min
    y_max = y_scale * y_max
    x_min = x_scale * x_min
    x_max = x_scale * x_max
    scaled_boxes = tf.concat([y_min, x_min, y_max, x_max], 1)
    return scaled_boxes
77

78
  absolute_boxes = shape_utils.static_or_dynamic_map_fn(
79
80
      _to_absolute_coordinates,
      elems=(normalized_boxes),
81
      dtype=normalized_boxes.dtype,
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
      parallel_iterations=parallel_iterations,
      back_prop=True)
  return absolute_boxes


def meshgrid(x, y):
  """Tiles the contents of x and y into a pair of grids.

  Multidimensional analog of numpy.meshgrid, giving the same behavior if x and y
  are vectors. Generally, this will give:

  xgrid(i1, ..., i_m, j_1, ..., j_n) = x(j_1, ..., j_n)
  ygrid(i1, ..., i_m, j_1, ..., j_n) = y(i_1, ..., i_m)

  Keep in mind that the order of the arguments and outputs is reverse relative
  to the order of the indices they go into, done for compatibility with numpy.
  The output tensors have the same shapes.  Specifically:

  xgrid.get_shape() = y.get_shape().concatenate(x.get_shape())
  ygrid.get_shape() = y.get_shape().concatenate(x.get_shape())

  Args:
    x: A tensor of arbitrary shape and rank. xgrid will contain these values
       varying in its last dimensions.
    y: A tensor of arbitrary shape and rank. ygrid will contain these values
       varying in its first dimensions.
  Returns:
    A tuple of tensors (xgrid, ygrid).
  """
  with tf.name_scope('Meshgrid'):
    x = tf.convert_to_tensor(x)
    y = tf.convert_to_tensor(y)
    x_exp_shape = expanded_shape(tf.shape(x), 0, tf.rank(y))
    y_exp_shape = expanded_shape(tf.shape(y), tf.rank(y), tf.rank(x))

    xgrid = tf.tile(tf.reshape(x, x_exp_shape), y_exp_shape)
    ygrid = tf.tile(tf.reshape(y, y_exp_shape), x_exp_shape)
    new_shape = y.get_shape().concatenate(x.get_shape())
    xgrid.set_shape(new_shape)
    ygrid.set_shape(new_shape)

    return xgrid, ygrid


126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def fixed_padding(inputs, kernel_size, rate=1):
  """Pads the input along the spatial dimensions independently of input size.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
                 Should be a positive integer.
    rate: An integer, rate for atrous convolution.

  Returns:
    output: A tensor of size [batch, height_out, width_out, channels] with the
      input, either intact (if kernel_size == 1) or padded (if kernel_size > 1).
  """
  kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
  pad_total = kernel_size_effective - 1
  pad_beg = pad_total // 2
  pad_end = pad_total - pad_beg
  padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
                                  [pad_beg, pad_end], [0, 0]])
  return padded_inputs


148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def pad_to_multiple(tensor, multiple):
  """Returns the tensor zero padded to the specified multiple.

  Appends 0s to the end of the first and second dimension (height and width) of
  the tensor until both dimensions are a multiple of the input argument
  'multiple'. E.g. given an input tensor of shape [1, 3, 5, 1] and an input
  multiple of 4, PadToMultiple will append 0s so that the resulting tensor will
  be of shape [1, 4, 8, 1].

  Args:
    tensor: rank 4 float32 tensor, where
            tensor -> [batch_size, height, width, channels].
    multiple: the multiple to pad to.

  Returns:
    padded_tensor: the tensor zero padded to the specified multiple.
  """
165
166
167
  if multiple == 1:
    return tensor

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
  tensor_shape = tensor.get_shape()
  batch_size = static_shape.get_batch_size(tensor_shape)
  tensor_height = static_shape.get_height(tensor_shape)
  tensor_width = static_shape.get_width(tensor_shape)
  tensor_depth = static_shape.get_depth(tensor_shape)

  if batch_size is None:
    batch_size = tf.shape(tensor)[0]

  if tensor_height is None:
    tensor_height = tf.shape(tensor)[1]
    padded_tensor_height = tf.to_int32(
        tf.ceil(tf.to_float(tensor_height) / tf.to_float(multiple))) * multiple
  else:
    padded_tensor_height = int(
        math.ceil(float(tensor_height) / multiple) * multiple)

  if tensor_width is None:
    tensor_width = tf.shape(tensor)[2]
    padded_tensor_width = tf.to_int32(
        tf.ceil(tf.to_float(tensor_width) / tf.to_float(multiple))) * multiple
  else:
    padded_tensor_width = int(
        math.ceil(float(tensor_width) / multiple) * multiple)

  if tensor_depth is None:
    tensor_depth = tf.shape(tensor)[3]

  # Use tf.concat instead of tf.pad to preserve static shape
197
198
199
200
201
202
203
204
205
206
207
208
209
210
  if padded_tensor_height != tensor_height:
    height_pad = tf.zeros([
        batch_size, padded_tensor_height - tensor_height, tensor_width,
        tensor_depth
    ])
    tensor = tf.concat([tensor, height_pad], 1)
  if padded_tensor_width != tensor_width:
    width_pad = tf.zeros([
        batch_size, padded_tensor_height, padded_tensor_width - tensor_width,
        tensor_depth
    ])
    tensor = tf.concat([tensor, width_pad], 2)

  return tensor
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234


def padded_one_hot_encoding(indices, depth, left_pad):
  """Returns a zero padded one-hot tensor.

  This function converts a sparse representation of indices (e.g., [4]) to a
  zero padded one-hot representation (e.g., [0, 0, 0, 0, 1] with depth = 4 and
  left_pad = 1). If `indices` is empty, the result will simply be a tensor of
  shape (0, depth + left_pad). If depth = 0, then this function just returns
  `None`.

  Args:
    indices: an integer tensor of shape [num_indices].
    depth: depth for the one-hot tensor (integer).
    left_pad: number of zeros to left pad the one-hot tensor with (integer).

  Returns:
    padded_onehot: a tensor with shape (num_indices, depth + left_pad). Returns
      `None` if the depth is zero.

  Raises:
    ValueError: if `indices` does not have rank 1 or if `left_pad` or `depth are
      either negative or non-integers.

235
  TODO(rathodv): add runtime checks for depth and indices.
236
  """
237
  if depth < 0 or not isinstance(depth, six.integer_types):
238
    raise ValueError('`depth` must be a non-negative integer.')
239
  if left_pad < 0 or not isinstance(left_pad, six.integer_types):
240
241
242
    raise ValueError('`left_pad` must be a non-negative integer.')
  if depth == 0:
    return None
243
244
245
246

  rank = len(indices.get_shape().as_list())
  if rank != 1:
    raise ValueError('`indices` must have rank 1, but has rank=%s' % rank)
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

  def one_hot_and_pad():
    one_hot = tf.cast(tf.one_hot(tf.cast(indices, tf.int64), depth,
                                 on_value=1, off_value=0), tf.float32)
    return tf.pad(one_hot, [[0, 0], [left_pad, 0]], mode='CONSTANT')
  result = tf.cond(tf.greater(tf.size(indices), 0), one_hot_and_pad,
                   lambda: tf.zeros((depth + left_pad, 0)))
  return tf.reshape(result, [-1, depth + left_pad])


def dense_to_sparse_boxes(dense_locations, dense_num_boxes, num_classes):
  """Converts bounding boxes from dense to sparse form.

  Args:
    dense_locations:  a [max_num_boxes, 4] tensor in which only the first k rows
      are valid bounding box location coordinates, where k is the sum of
      elements in dense_num_boxes.
    dense_num_boxes: a [max_num_classes] tensor indicating the counts of
       various bounding box classes e.g. [1, 0, 0, 2] means that the first
       bounding box is of class 0 and the second and third bounding boxes are
       of class 3. The sum of elements in this tensor is the number of valid
       bounding boxes.
    num_classes: number of classes

  Returns:
    box_locations: a [num_boxes, 4] tensor containing only valid bounding
       boxes (i.e. the first num_boxes rows of dense_locations)
    box_classes: a [num_boxes] tensor containing the classes of each bounding
       box (e.g. dense_num_boxes = [1, 0, 0, 2] => box_classes = [0, 3, 3]
  """

  num_valid_boxes = tf.reduce_sum(dense_num_boxes)
  box_locations = tf.slice(dense_locations,
                           tf.constant([0, 0]), tf.stack([num_valid_boxes, 4]))
  tiled_classes = [tf.tile([i], tf.expand_dims(dense_num_boxes[i], 0))
                   for i in range(num_classes)]
  box_classes = tf.concat(tiled_classes, 0)
  box_locations.set_shape([None, 4])
  return box_locations, box_classes


def indices_to_dense_vector(indices,
                            size,
                            indices_value=1.,
                            default_value=0,
                            dtype=tf.float32):
  """Creates dense vector with indices set to specific value and rest to zeros.

  This function exists because it is unclear if it is safe to use
    tf.sparse_to_dense(indices, [size], 1, validate_indices=False)
  with indices which are not ordered.
  This function accepts a dynamic size (e.g. tf.shape(tensor)[0])

  Args:
    indices: 1d Tensor with integer indices which are to be set to
        indices_values.
    size: scalar with size (integer) of output Tensor.
    indices_value: values of elements specified by indices in the output vector
    default_value: values of other elements in the output vector.
    dtype: data type.

  Returns:
    dense 1D Tensor of shape [size] with indices set to indices_values and the
        rest set to default_value.
  """
  size = tf.to_int32(size)
  zeros = tf.ones([size], dtype=dtype) * default_value
  values = tf.ones_like(indices, dtype=dtype) * indices_value

  return tf.dynamic_stitch([tf.range(size), tf.to_int32(indices)],
                           [zeros, values])


320
321
322
323
324
def reduce_sum_trailing_dimensions(tensor, ndims):
  """Computes sum across all dimensions following first `ndims` dimensions."""
  return tf.reduce_sum(tensor, axis=tuple(range(ndims, tensor.shape.ndims)))


325
326
327
328
329
330
331
def retain_groundtruth(tensor_dict, valid_indices):
  """Retains groundtruth by valid indices.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
332
      fields.InputDataFields.groundtruth_confidences
333
334
      fields.InputDataFields.groundtruth_keypoints
      fields.InputDataFields.groundtruth_instance_masks
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types
      fields.InputDataFields.groundtruth_difficult
    valid_indices: a tensor with valid indices for the box-level groundtruth.

  Returns:
    a dictionary of tensors containing only the groundtruth for valid_indices.

  Raises:
    ValueError: If the shape of valid_indices is invalid.
    ValueError: field fields.InputDataFields.groundtruth_boxes is
      not present in tensor_dict.
  """
  input_shape = valid_indices.get_shape().as_list()
  if not (len(input_shape) == 1 or
          (len(input_shape) == 2 and input_shape[1] == 1)):
    raise ValueError('The shape of valid_indices is invalid.')
  valid_indices = tf.reshape(valid_indices, [-1])
  valid_dict = {}
  if fields.InputDataFields.groundtruth_boxes in tensor_dict:
    # Prevents reshape failure when num_boxes is 0.
    num_boxes = tf.maximum(tf.shape(
        tensor_dict[fields.InputDataFields.groundtruth_boxes])[0], 1)
    for key in tensor_dict:
      if key in [fields.InputDataFields.groundtruth_boxes,
361
                 fields.InputDataFields.groundtruth_classes,
362
                 fields.InputDataFields.groundtruth_confidences,
363
                 fields.InputDataFields.groundtruth_keypoints,
364
                 fields.InputDataFields.groundtruth_keypoint_visibilities,
365
                 fields.InputDataFields.groundtruth_instance_masks]:
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
        valid_dict[key] = tf.gather(tensor_dict[key], valid_indices)
      # Input decoder returns empty tensor when these fields are not provided.
      # Needs to reshape into [num_boxes, -1] for tf.gather() to work.
      elif key in [fields.InputDataFields.groundtruth_is_crowd,
                   fields.InputDataFields.groundtruth_area,
                   fields.InputDataFields.groundtruth_difficult,
                   fields.InputDataFields.groundtruth_label_types]:
        valid_dict[key] = tf.reshape(
            tf.gather(tf.reshape(tensor_dict[key], [num_boxes, -1]),
                      valid_indices), [-1])
      # Fields that are not associated with boxes.
      else:
        valid_dict[key] = tensor_dict[key]
  else:
    raise ValueError('%s not present in input tensor dict.' % (
        fields.InputDataFields.groundtruth_boxes))
  return valid_dict


def retain_groundtruth_with_positive_classes(tensor_dict):
  """Retains only groundtruth with positive class ids.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
392
      fields.InputDataFields.groundtruth_confidences
393
394
      fields.InputDataFields.groundtruth_keypoints
      fields.InputDataFields.groundtruth_instance_masks
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types
      fields.InputDataFields.groundtruth_difficult

  Returns:
    a dictionary of tensors containing only the groundtruth with positive
    classes.

  Raises:
    ValueError: If groundtruth_classes tensor is not in tensor_dict.
  """
  if fields.InputDataFields.groundtruth_classes not in tensor_dict:
    raise ValueError('`groundtruth classes` not in tensor_dict.')
  keep_indices = tf.where(tf.greater(
      tensor_dict[fields.InputDataFields.groundtruth_classes], 0))
  return retain_groundtruth(tensor_dict, keep_indices)


414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
def replace_nan_groundtruth_label_scores_with_ones(label_scores):
  """Replaces nan label scores with 1.0.

  Args:
    label_scores: a tensor containing object annoation label scores.

  Returns:
    a tensor where NaN label scores have been replaced by ones.
  """
  return tf.where(
      tf.is_nan(label_scores), tf.ones(tf.shape(label_scores)), label_scores)


def filter_groundtruth_with_crowd_boxes(tensor_dict):
  """Filters out groundtruth with boxes corresponding to crowd.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
434
      fields.InputDataFields.groundtruth_confidences
435
436
      fields.InputDataFields.groundtruth_keypoints
      fields.InputDataFields.groundtruth_instance_masks
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  if fields.InputDataFields.groundtruth_is_crowd in tensor_dict:
    is_crowd = tensor_dict[fields.InputDataFields.groundtruth_is_crowd]
    is_not_crowd = tf.logical_not(is_crowd)
    is_not_crowd_indices = tf.where(is_not_crowd)
    tensor_dict = retain_groundtruth(tensor_dict, is_not_crowd_indices)
  return tensor_dict


453
454
455
456
457
458
459
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
  """Filters out groundtruth with no bounding boxes.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
460
      fields.InputDataFields.groundtruth_confidences
461
462
      fields.InputDataFields.groundtruth_keypoints
      fields.InputDataFields.groundtruth_instance_masks
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
  nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
      tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
  valid_indicator_vector = tf.logical_not(nan_indicator_vector)
  valid_indices = tf.where(valid_indicator_vector)

  return retain_groundtruth(tensor_dict, valid_indices)


480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
def filter_unrecognized_classes(tensor_dict):
  """Filters out class labels that are not unrecognized by the labelmap.

  Decoder would parse unrecognized classes (not included in the labelmap) to
  a label of value -1. Such targets are unecessary for training, and causes
  issue for evaluation, due to labeling mapping logic. This function filters
  those labels out for both training and evaluation.

  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.

  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors
    obtained after applying the filtering.

  Raises:
    ValueError: If groundtruth_classes tensor is not in tensor_dict.
  """
  if fields.InputDataFields.groundtruth_classes not in tensor_dict:
    raise ValueError('`groundtruth classes` not in tensor_dict.')
  # Refer to tf_example_decoder for how unrecognized labels are handled.
  unrecognized_label = -1
  recognized_indices = tf.where(
      tf.greater(tensor_dict[fields.InputDataFields.groundtruth_classes],
                 unrecognized_label))

  return retain_groundtruth(tensor_dict, recognized_indices)


510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
def normalize_to_target(inputs,
                        target_norm_value,
                        dim,
                        epsilon=1e-7,
                        trainable=True,
                        scope='NormalizeToTarget',
                        summarize=True):
  """L2 normalizes the inputs across the specified dimension to a target norm.

  This op implements the L2 Normalization layer introduced in
  Liu, Wei, et al. "SSD: Single Shot MultiBox Detector."
  and Liu, Wei, Andrew Rabinovich, and Alexander C. Berg.
  "Parsenet: Looking wider to see better." and is useful for bringing
  activations from multiple layers in a convnet to a standard scale.

  Note that the rank of `inputs` must be known and the dimension to which
  normalization is to be applied should be statically defined.

528
  TODO(jonathanhuang): Add option to scale by L2 norm of the entire input.
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586

  Args:
    inputs: A `Tensor` of arbitrary size.
    target_norm_value: A float value that specifies an initial target norm or
      a list of floats (whose length must be equal to the depth along the
      dimension to be normalized) specifying a per-dimension multiplier
      after normalization.
    dim: The dimension along which the input is normalized.
    epsilon: A small value to add to the inputs to avoid dividing by zero.
    trainable: Whether the norm is trainable or not
    scope: Optional scope for variable_scope.
    summarize: Whether or not to add a tensorflow summary for the op.

  Returns:
    The input tensor normalized to the specified target norm.

  Raises:
    ValueError: If dim is smaller than the number of dimensions in 'inputs'.
    ValueError: If target_norm_value is not a float or a list of floats with
      length equal to the depth along the dimension to be normalized.
  """
  with tf.variable_scope(scope, 'NormalizeToTarget', [inputs]):
    if not inputs.get_shape():
      raise ValueError('The input rank must be known.')
    input_shape = inputs.get_shape().as_list()
    input_rank = len(input_shape)
    if dim < 0 or dim >= input_rank:
      raise ValueError(
          'dim must be non-negative but smaller than the input rank.')
    if not input_shape[dim]:
      raise ValueError('input shape should be statically defined along '
                       'the specified dimension.')
    depth = input_shape[dim]
    if not (isinstance(target_norm_value, float) or
            (isinstance(target_norm_value, list) and
             len(target_norm_value) == depth) and
            all([isinstance(val, float) for val in target_norm_value])):
      raise ValueError('target_norm_value must be a float or a list of floats '
                       'with length equal to the depth along the dimension to '
                       'be normalized.')
    if isinstance(target_norm_value, float):
      initial_norm = depth * [target_norm_value]
    else:
      initial_norm = target_norm_value
    target_norm = tf.contrib.framework.model_variable(
        name='weights', dtype=tf.float32,
        initializer=tf.constant(initial_norm, dtype=tf.float32),
        trainable=trainable)
    if summarize:
      mean = tf.reduce_mean(target_norm)
      mean = tf.Print(mean, ['NormalizeToTarget:', mean])
      tf.summary.scalar(tf.get_variable_scope().name, mean)
    lengths = epsilon + tf.sqrt(tf.reduce_sum(tf.square(inputs), dim, True))
    mult_shape = input_rank*[1]
    mult_shape[dim] = depth
    return tf.reshape(target_norm, mult_shape) * tf.truediv(inputs, lengths)


587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
def batch_position_sensitive_crop_regions(images,
                                          boxes,
                                          crop_size,
                                          num_spatial_bins,
                                          global_pool,
                                          parallel_iterations=64):
  """Position sensitive crop with batches of images and boxes.

  This op is exactly like `position_sensitive_crop_regions` below but operates
  on batches of images and boxes. See `position_sensitive_crop_regions` function
  below for the operation applied per batch element.

  Args:
    images: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
      `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
      A 4-D tensor of shape `[batch, image_height, image_width, depth]`.
      Both `image_height` and `image_width` need to be positive.
    boxes: A `Tensor` of type `float32`.
      A 3-D tensor of shape `[batch, num_boxes, 4]`. Each box is specified in
      normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value
      of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so
      as the `[0, 1]` interval of normalized image height is mapped to
      `[0, image_height - 1] in image height coordinates. We do allow y1 > y2,
      in which case the sampled crop is an up-down flipped version of the
      original image. The width dimension is treated similarly.
    crop_size: See `position_sensitive_crop_regions` below.
    num_spatial_bins: See `position_sensitive_crop_regions` below.
    global_pool: See `position_sensitive_crop_regions` below.
    parallel_iterations: Number of batch items to process in parallel.

  Returns:
  """
  def _position_sensitive_crop_fn(inputs):
    images, boxes = inputs
    return position_sensitive_crop_regions(
        images,
        boxes,
        crop_size=crop_size,
        num_spatial_bins=num_spatial_bins,
        global_pool=global_pool)

  return shape_utils.static_or_dynamic_map_fn(
      _position_sensitive_crop_fn,
      elems=[images, boxes],
      dtype=tf.float32,
      parallel_iterations=parallel_iterations)


635
636
637
638
def position_sensitive_crop_regions(image,
                                    boxes,
                                    crop_size,
                                    num_spatial_bins,
639
                                    global_pool):
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
  """Position-sensitive crop and pool rectangular regions from a feature grid.

  The output crops are split into `spatial_bins_y` vertical bins
  and `spatial_bins_x` horizontal bins. For each intersection of a vertical
  and a horizontal bin the output values are gathered by performing
  `tf.image.crop_and_resize` (bilinear resampling) on a a separate subset of
  channels of the image. This reduces `depth` by a factor of
  `(spatial_bins_y * spatial_bins_x)`.

  When global_pool is True, this function implements a differentiable version
  of position-sensitive RoI pooling used in
  [R-FCN detection system](https://arxiv.org/abs/1605.06409).

  When global_pool is False, this function implements a differentiable version
  of position-sensitive assembling operation used in
  [instance FCN](https://arxiv.org/abs/1603.08678).

  Args:
    image: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
      `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
660
      A 3-D tensor of shape `[image_height, image_width, depth]`.
661
662
      Both `image_height` and `image_width` need to be positive.
    boxes: A `Tensor` of type `float32`.
663
664
665
666
667
668
669
      A 2-D tensor of shape `[num_boxes, 4]`. Each box is specified in
      normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value
      of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so
      as the `[0, 1]` interval of normalized image height is mapped to
      `[0, image_height - 1] in image height coordinates. We do allow y1 > y2,
      in which case the sampled crop is an up-down flipped version of the
      original image. The width dimension is treated similarly.
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
    crop_size: A list of two integers `[crop_height, crop_width]`. All
      cropped image patches are resized to this size. The aspect ratio of the
      image content is not preserved. Both `crop_height` and `crop_width` need
      to be positive.
    num_spatial_bins: A list of two integers `[spatial_bins_y, spatial_bins_x]`.
      Represents the number of position-sensitive bins in y and x directions.
      Both values should be >= 1. `crop_height` should be divisible by
      `spatial_bins_y`, and similarly for width.
      The number of image channels should be divisible by
      (spatial_bins_y * spatial_bins_x).
      Suggested value from R-FCN paper: [3, 3].
    global_pool: A boolean variable.
      If True, we perform average global pooling on the features assembled from
        the position-sensitive score maps.
      If False, we keep the position-pooled features without global pooling
        over the spatial coordinates.
      Note that using global_pool=True is equivalent to but more efficient than
        running the function with global_pool=False and then performing global
        average pooling.
689

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
  Returns:
    position_sensitive_features: A 4-D tensor of shape
      `[num_boxes, K, K, crop_channels]`,
      where `crop_channels = depth / (spatial_bins_y * spatial_bins_x)`,
      where K = 1 when global_pool is True (Average-pooled cropped regions),
      and K = crop_size when global_pool is False.
  Raises:
    ValueError: Raised in four situations:
      `num_spatial_bins` is not >= 1;
      `num_spatial_bins` does not divide `crop_size`;
      `(spatial_bins_y*spatial_bins_x)` does not divide `depth`;
      `bin_crop_size` is not square when global_pool=False due to the
        constraint in function space_to_depth.
  """
  total_bins = 1
  bin_crop_size = []

  for (num_bins, crop_dim) in zip(num_spatial_bins, crop_size):
    if num_bins < 1:
      raise ValueError('num_spatial_bins should be >= 1')

    if crop_dim % num_bins != 0:
      raise ValueError('crop_size should be divisible by num_spatial_bins')

    total_bins *= num_bins
715
    bin_crop_size.append(crop_dim // num_bins)
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

  if not global_pool and bin_crop_size[0] != bin_crop_size[1]:
    raise ValueError('Only support square bin crop size for now.')

  ymin, xmin, ymax, xmax = tf.unstack(boxes, axis=1)
  spatial_bins_y, spatial_bins_x = num_spatial_bins

  # Split each box into spatial_bins_y * spatial_bins_x bins.
  position_sensitive_boxes = []
  for bin_y in range(spatial_bins_y):
    step_y = (ymax - ymin) / spatial_bins_y
    for bin_x in range(spatial_bins_x):
      step_x = (xmax - xmin) / spatial_bins_x
      box_coordinates = [ymin + bin_y * step_y,
                         xmin + bin_x * step_x,
                         ymin + (bin_y + 1) * step_y,
                         xmin + (bin_x + 1) * step_x,
                        ]
      position_sensitive_boxes.append(tf.stack(box_coordinates, axis=1))

736
  image_splits = tf.split(value=image, num_or_size_splits=total_bins, axis=2)
737
738
739

  image_crops = []
  for (split, box) in zip(image_splits, position_sensitive_boxes):
740
    if split.shape.is_fully_defined() and box.shape.is_fully_defined():
741
742
743
744
745
      crop = tf.squeeze(
          matmul_crop_and_resize(
              tf.expand_dims(split, axis=0), tf.expand_dims(box, axis=0),
              bin_crop_size),
          axis=0)
746
747
748
749
    else:
      crop = tf.image.crop_and_resize(
          tf.expand_dims(split, 0), box,
          tf.zeros(tf.shape(boxes)[0], dtype=tf.int32), bin_crop_size)
750
751
752
753
754
755
756
    image_crops.append(crop)

  if global_pool:
    # Average over all bins.
    position_sensitive_features = tf.add_n(image_crops) / len(image_crops)
    # Then average over spatial positions within the bins.
    position_sensitive_features = tf.reduce_mean(
757
        position_sensitive_features, [1, 2], keep_dims=True)
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
  else:
    # Reorder height/width to depth channel.
    block_size = bin_crop_size[0]
    if block_size >= 2:
      image_crops = [tf.space_to_depth(
          crop, block_size=block_size) for crop in image_crops]

    # Pack image_crops so that first dimension is for position-senstive boxes.
    position_sensitive_features = tf.stack(image_crops, axis=0)

    # Unroll the position-sensitive boxes to spatial positions.
    position_sensitive_features = tf.squeeze(
        tf.batch_to_space_nd(position_sensitive_features,
                             block_shape=[1] + num_spatial_bins,
                             crops=tf.zeros((3, 2), dtype=tf.int32)),
        squeeze_dims=[0])

    # Reorder back the depth channel.
    if block_size >= 2:
      position_sensitive_features = tf.depth_to_space(
          position_sensitive_features, block_size=block_size)

  return position_sensitive_features


def reframe_box_masks_to_image_masks(box_masks, boxes, image_height,
                                     image_width):
  """Transforms the box masks back to full image masks.

  Embeds masks in bounding boxes of larger masks whose shapes correspond to
  image shape.

  Args:
    box_masks: A tf.float32 tensor of size [num_masks, mask_height, mask_width].
    boxes: A tf.float32 tensor of size [num_masks, 4] containing the box
           corners. Row i contains [ymin, xmin, ymax, xmax] of the box
           corresponding to mask i. Note that the box corners are in
           normalized coordinates.
    image_height: Image height. The output mask will have the same height as
                  the image height.
    image_width: Image width. The output mask will have the same width as the
                 image width.

  Returns:
    A tf.float32 tensor of size [num_masks, image_height, image_width].
  """
804
  # TODO(rathodv): Make this a public function.
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
  def reframe_box_masks_to_image_masks_default():
    """The default function when there are more than 0 box masks."""
    def transform_boxes_relative_to_boxes(boxes, reference_boxes):
      boxes = tf.reshape(boxes, [-1, 2, 2])
      min_corner = tf.expand_dims(reference_boxes[:, 0:2], 1)
      max_corner = tf.expand_dims(reference_boxes[:, 2:4], 1)
      transformed_boxes = (boxes - min_corner) / (max_corner - min_corner)
      return tf.reshape(transformed_boxes, [-1, 4])

    box_masks_expanded = tf.expand_dims(box_masks, axis=3)
    num_boxes = tf.shape(box_masks_expanded)[0]
    unit_boxes = tf.concat(
        [tf.zeros([num_boxes, 2]), tf.ones([num_boxes, 2])], axis=1)
    reverse_boxes = transform_boxes_relative_to_boxes(unit_boxes, boxes)
    return tf.image.crop_and_resize(
        image=box_masks_expanded,
        boxes=reverse_boxes,
        box_ind=tf.range(num_boxes),
        crop_size=[image_height, image_width],
        extrapolation_value=0.0)
  image_masks = tf.cond(
      tf.shape(box_masks)[0] > 0,
      reframe_box_masks_to_image_masks_default,
      lambda: tf.zeros([0, image_height, image_width, 1], dtype=tf.float32))
829
  return tf.squeeze(image_masks, axis=3)
830
831


832
833
834
835
836
def merge_boxes_with_multiple_labels(boxes,
                                     classes,
                                     confidences,
                                     num_classes,
                                     quantization_bins=10000):
837
838
839
  """Merges boxes with same coordinates and returns K-hot encoded classes.

  Args:
840
841
    boxes: A tf.float32 tensor with shape [N, 4] holding N boxes. Only
      normalized coordinates are allowed.
842
843
    classes: A tf.int32 tensor with shape [N] holding class indices.
      The class index starts at 0.
844
    confidences: A tf.float32 tensor with shape [N] holding class confidences.
845
    num_classes: total number of classes to use for K-hot encoding.
846
    quantization_bins: the number of bins used to quantize the box coordinate.
847
848
849
850
851

  Returns:
    merged_boxes: A tf.float32 tensor with shape [N', 4] holding boxes,
      where N' <= N.
    class_encodings: A tf.int32 tensor with shape [N', num_classes] holding
852
853
854
      K-hot encodings for the merged boxes.
    confidence_encodings: A tf.float32 tensor with shape [N', num_classes]
      holding encodings of confidences for the merged boxes.
855
856
857
    merged_box_indices: A tf.int32 tensor with shape [N'] holding original
      indices of the boxes.
  """
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
  boxes_shape = tf.shape(boxes)
  classes_shape = tf.shape(classes)
  confidences_shape = tf.shape(confidences)
  box_class_shape_assert = shape_utils.assert_shape_equal_along_first_dimension(
      boxes_shape, classes_shape)
  box_confidence_shape_assert = (
      shape_utils.assert_shape_equal_along_first_dimension(
          boxes_shape, confidences_shape))
  box_dimension_assert = tf.assert_equal(boxes_shape[1], 4)
  box_normalized_assert = shape_utils.assert_box_normalized(boxes)

  with tf.control_dependencies(
      [box_class_shape_assert, box_confidence_shape_assert,
       box_dimension_assert, box_normalized_assert]):
    quantized_boxes = tf.to_int64(boxes * (quantization_bins - 1))
    ymin, xmin, ymax, xmax = tf.unstack(quantized_boxes, axis=1)
    hashcodes = (
        ymin +
        xmin * quantization_bins +
        ymax * quantization_bins * quantization_bins +
        xmax * quantization_bins * quantization_bins * quantization_bins)
    unique_hashcodes, unique_indices = tf.unique(hashcodes)
    num_boxes = tf.shape(boxes)[0]
    num_unique_boxes = tf.shape(unique_hashcodes)[0]
    merged_box_indices = tf.unsorted_segment_min(
        tf.range(num_boxes), unique_indices, num_unique_boxes)
    merged_boxes = tf.gather(boxes, merged_box_indices)
885
886
    unique_indices = tf.to_int64(unique_indices)
    classes = tf.to_int64(classes)
887
888
889
890

    def map_box_encodings(i):
      """Produces box K-hot and score encodings for each class index."""
      box_mask = tf.equal(
891
          unique_indices, i * tf.ones(num_boxes, dtype=tf.int64))
892
893
894
895
      box_mask = tf.reshape(box_mask, [-1])
      box_indices = tf.boolean_mask(classes, box_mask)
      box_confidences = tf.boolean_mask(confidences, box_mask)
      box_class_encodings = tf.sparse_to_dense(
896
897
          box_indices, [num_classes], tf.constant(1, dtype=tf.int64),
          validate_indices=False)
898
899
900
901
      box_confidence_encodings = tf.sparse_to_dense(
          box_indices, [num_classes], box_confidences, validate_indices=False)
      return box_class_encodings, box_confidence_encodings

902
903
    # Important to avoid int32 here since there is no GPU kernel for int32.
    # int64 and float32 are fine.
904
905
    class_encodings, confidence_encodings = tf.map_fn(
        map_box_encodings,
906
        tf.range(tf.to_int64(num_unique_boxes)),
907
        back_prop=False,
908
        dtype=(tf.int64, tf.float32))
909
910

    merged_boxes = tf.reshape(merged_boxes, [-1, 4])
911
    class_encodings = tf.to_int32(class_encodings)
912
913
914
915
916
    class_encodings = tf.reshape(class_encodings, [-1, num_classes])
    confidence_encodings = tf.reshape(confidence_encodings, [-1, num_classes])
    merged_box_indices = tf.reshape(merged_box_indices, [-1])
    return (merged_boxes, class_encodings, confidence_encodings,
            merged_box_indices)
917
918


919
920
def nearest_neighbor_upsampling(input_tensor, scale=None, height_scale=None,
                                width_scale=None):
921
922
923
924
  """Nearest neighbor upsampling implementation.

  Nearest neighbor upsampling function that maps input tensor with shape
  [batch_size, height, width, channels] to [batch_size, height * scale
925
926
  , width * scale, channels]. This implementation only uses reshape and
  broadcasting to make it TPU compatible.
927
928
929
930

  Args:
    input_tensor: A float32 tensor of size [batch, height_in, width_in,
      channels].
931
932
933
934
935
936
    scale: An integer multiple to scale resolution of input data in both height
      and width dimensions.
    height_scale: An integer multiple to scale the height of input image. This
      option when provided overrides `scale` option.
    width_scale: An integer multiple to scale the width of input image. This
      option when provided overrides `scale` option.
937
938
939
  Returns:
    data_up: A float32 tensor of size
      [batch, height_in*scale, width_in*scale, channels].
940
941
942
943

  Raises:
    ValueError: If both scale and height_scale or if both scale and width_scale
      are None.
944
  """
945
946
947
  if not scale and (height_scale is None or width_scale is None):
    raise ValueError('Provide either `scale` or `height_scale` and'
                     ' `width_scale`.')
948
  with tf.name_scope('nearest_neighbor_upsampling'):
949
950
    h_scale = scale if height_scale is None else height_scale
    w_scale = scale if width_scale is None else width_scale
951
952
953
954
    (batch_size, height, width,
     channels) = shape_utils.combined_static_and_dynamic_shape(input_tensor)
    output_tensor = tf.reshape(
        input_tensor, [batch_size, height, 1, width, 1, channels]) * tf.ones(
955
            [1, 1, h_scale, 1, w_scale, 1], dtype=input_tensor.dtype)
956
    return tf.reshape(output_tensor,
957
                      [batch_size, height * h_scale, width * w_scale, channels])
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976


def matmul_gather_on_zeroth_axis(params, indices, scope=None):
  """Matrix multiplication based implementation of tf.gather on zeroth axis.

  TODO(rathodv, jonathanhuang): enable sparse matmul option.

  Args:
    params: A float32 Tensor. The tensor from which to gather values.
      Must be at least rank 1.
    indices: A Tensor. Must be one of the following types: int32, int64.
      Must be in range [0, params.shape[0])
    scope: A name for the operation (optional).

  Returns:
    A Tensor. Has the same type as params. Values from params gathered
    from indices given by indices, with shape indices.shape + params.shape[1:].
  """
  with tf.name_scope(scope, 'MatMulGather'):
977
978
979
980
    params_shape = shape_utils.combined_static_and_dynamic_shape(params)
    indices_shape = shape_utils.combined_static_and_dynamic_shape(indices)
    params2d = tf.reshape(params, [params_shape[0], -1])
    indicator_matrix = tf.one_hot(indices, params_shape[0])
981
982
    gathered_result_flattened = tf.matmul(indicator_matrix, params2d)
    return tf.reshape(gathered_result_flattened,
983
                      tf.stack(indices_shape + params_shape[1:]))
984
985
986
987
988
989
990
991
992
993
994
995
996
997


def matmul_crop_and_resize(image, boxes, crop_size, scope=None):
  """Matrix multiplication based implementation of the crop and resize op.

  Extracts crops from the input image tensor and bilinearly resizes them
  (possibly with aspect ratio change) to a common output size specified by
  crop_size. This is more general than the crop_to_bounding_box op which
  extracts a fixed size slice from the input image and does not allow
  resizing or aspect ratio change.

  Returns a tensor with crops from the input image at positions defined at
  the bounding box locations in boxes. The cropped boxes are all resized
  (with bilinear interpolation) to a fixed size = `[crop_height, crop_width]`.
998
999
  The result is a 5-D tensor `[batch, num_boxes, crop_height, crop_width,
  depth]`.
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

  Running time complexity:
    O((# channels) * (# boxes) * (crop_size)^2 * M), where M is the number
  of pixels of the longer edge of the image.

  Note that this operation is meant to replicate the behavior of the standard
  tf.image.crop_and_resize operation but there are a few differences.
  Specifically:
    1) The extrapolation value (the values that are interpolated from outside
      the bounds of the image window) is always zero
    2) Only XLA supported operations are used (e.g., matrix multiplication).
    3) There is no `box_indices` argument --- to run this op on multiple images,
      one must currently call this op independently on each image.
1013
1014
    4) The `crop_size` parameter is assumed to be statically defined.
      Moreover, the number of boxes must be strictly nonzero.
1015
1016
1017

  Args:
    image: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
1018
      `int16`, `int32`, `int64`, `half`, 'bfloat16', `float32`, `float64`.
1019
1020
      A 4-D tensor of shape `[batch, image_height, image_width, depth]`.
      Both `image_height` and `image_width` need to be positive.
1021
1022
1023
1024
    boxes: A `Tensor` of type `float32` or 'bfloat16'.
      A 3-D tensor of shape `[batch, num_boxes, 4]`. The boxes are specified in
      normalized coordinates and are of the form `[y1, x1, y2, x2]`. A
      normalized coordinate value of `y` is mapped to the image coordinate at
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
      `y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image
      height is mapped to `[0, image_height - 1] in image height coordinates.
      We do allow y1 > y2, in which case the sampled crop is an up-down flipped
      version of the original image. The width dimension is treated similarly.
      Normalized coordinates outside the `[0, 1]` range are allowed, in which
      case we use `extrapolation_value` to extrapolate the input image values.
    crop_size: A list of two integers `[crop_height, crop_width]`. All
      cropped image patches are resized to this size. The aspect ratio of the
      image content is not preserved. Both `crop_height` and `crop_width` need
      to be positive.
    scope: A name for the operation (optional).

  Returns:
1038
    A 5-D tensor of shape `[batch, num_boxes, crop_height, crop_width, depth]`
1039
  """
1040
1041
1042
  img_shape = tf.shape(image)
  img_height = img_shape[1]
  img_width = img_shape[2]
1043
1044
1045

  def _lin_space_weights(num, img_size):
    if num > 1:
1046
1047
      start_weights = tf.linspace(tf.to_float(img_size) - 1.0, 0.0, num)
      stop_weights = tf.to_float(img_size) - 1.0 - start_weights
1048
    else:
1049
1050
1051
1052
      start_weights = tf.ones([num], dtype=tf.float32) * \
          .5 * (tf.to_float(img_size) - 1.0)
      stop_weights = tf.ones([num], dtype=tf.float32) * \
          .5 * (tf.to_float(img_size) - 1.0)
1053
    return (start_weights, stop_weights)
1054
1055
1056
1057

  with tf.name_scope(scope, 'MatMulCropAndResize'):
    y1_weights, y2_weights = _lin_space_weights(crop_size[0], img_height)
    x1_weights, x2_weights = _lin_space_weights(crop_size[1], img_width)
1058
1059
1060
1061
1062
    y1_weights = tf.cast(y1_weights, boxes.dtype)
    y2_weights = tf.cast(y2_weights, boxes.dtype)
    x1_weights = tf.cast(x1_weights, boxes.dtype)
    x2_weights = tf.cast(x2_weights, boxes.dtype)
    [y1, x1, y2, x2] = tf.unstack(boxes, axis=2)
1063
1064

    # Pixel centers of input image and grid points along height and width
1065
1066
    image_idx_h = tf.cast(
        tf.reshape(tf.range(img_height), (1, 1, 1, img_height)),
1067
        dtype=boxes.dtype)
1068
1069
    image_idx_w = tf.cast(
        tf.reshape(tf.range(img_width), (1, 1, 1, img_width)),
1070
1071
        dtype=boxes.dtype)
    grid_pos_h = tf.expand_dims(
1072
1073
        tf.einsum('ab,c->abc', y1, y1_weights) +
        tf.einsum('ab,c->abc', y2, y2_weights),
1074
1075
        axis=3)
    grid_pos_w = tf.expand_dims(
1076
1077
        tf.einsum('ab,c->abc', x1, x1_weights) +
        tf.einsum('ab,c->abc', x2, x2_weights),
1078
        axis=3)
1079
1080
1081
1082
1083
1084

    # Create kernel matrices of pairwise kernel evaluations between pixel
    # centers of image and grid points.
    kernel_h = tf.nn.relu(1 - tf.abs(image_idx_h - grid_pos_h))
    kernel_w = tf.nn.relu(1 - tf.abs(image_idx_w - grid_pos_w))

1085
1086
    # Compute matrix multiplication between
    # the spatial dimensions of the image
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
    # and height-wise kernel using einsum.
    intermediate_image = tf.einsum('abci,aiop->abcop', kernel_h, image)
    # Compute matrix multiplication between the spatial dimensions of the
    # intermediate_image and width-wise kernel using einsum.
    return tf.einsum('abno,abcop->abcnp', kernel_w, intermediate_image)


def native_crop_and_resize(image, boxes, crop_size, scope=None):
  """Same as `matmul_crop_and_resize` but uses tf.image.crop_and_resize."""
  def get_box_inds(proposals):
    proposals_shape = proposals.get_shape().as_list()
    if any(dim is None for dim in proposals_shape):
      proposals_shape = tf.shape(proposals)
    ones_mat = tf.ones(proposals_shape[:2], dtype=tf.int32)
    multiplier = tf.expand_dims(
        tf.range(start=0, limit=proposals_shape[0]), 1)
    return tf.reshape(ones_mat * multiplier, [-1])

  with tf.name_scope(scope, 'CropAndResize'):
    cropped_regions = tf.image.crop_and_resize(
        image, tf.reshape(boxes, [-1] + boxes.shape.as_list()[2:]),
        get_box_inds(boxes), crop_size)
    final_shape = tf.concat([tf.shape(boxes)[:2],
                             tf.shape(cropped_regions)[1:]], axis=0)
    return tf.reshape(cropped_regions, final_shape)
1112
1113


1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
def bfloat16_to_float32_nested(tensor_nested):
  """Convert float32 tensors in a nested structure to bfloat16.

  Args:
    tensor_nested: A Python dict, values being Tensor or Python list/tuple of
      Tensor.

  Returns:
    A Python dict with the same structure as `tensor_dict`,
    with all bfloat16 tensors converted to float32.
  """
  if isinstance(tensor_nested, tf.Tensor):
    if tensor_nested.dtype == tf.bfloat16:
      return tf.cast(tensor_nested, dtype=tf.float32)
    else:
      return tensor_nested
  elif isinstance(tensor_nested, (list, tuple)):
    out_tensor_dict = [bfloat16_to_float32_nested(t) for t in tensor_nested]
  elif isinstance(tensor_nested, dict):
    out_tensor_dict = {
        k: bfloat16_to_float32_nested(v) for k, v in tensor_nested.items()
    }
  return out_tensor_dict


def gather_with_padding_values(input_tensor, indices, padding_value):
  """Gathers elements from tensor and pads `padding_value` for ignore indices.

  Gathers elements from `input_tensor` based on `indices`. If there are ignore
  indices (which are "-1"s) in `indices`, `padding_value` will be gathered for
  those positions.

  Args:
    input_tensor: A N-D tensor of shape [M, d_1, d_2 .. d_(N-1)] to gather
      values from.
    indices: A 1-D tensor in which each element is either an index in the
      first dimension of input_tensor or -1.
    padding_value: A (N-1)-D tensor of shape [d_1, d_2 .. d_(N-1)] which will be
      used as gathered value for each ignore index in `indices`.

  Returns:
    gathered_tensor: A tensor of shape [L, d_1, d_2 .. d_(N-1)] containing
      values gathered from input_tensor. The first dimension L is equal to the
      length of `indices`.
  """
  padding_value = tf.expand_dims(padding_value, axis=0)
  input_tensor = tf.concat([padding_value, input_tensor], axis=0)
  gather_indices = indices + 1
  gathered_tensor = tf.gather(input_tensor, gather_indices)
  return gathered_tensor


1166
1167
1168



1169
1170
EqualizationLossConfig = collections.namedtuple('EqualizationLossConfig',
                                                ['weight', 'exclude_prefixes'])
1171
1172