text_layers.py 25.5 KB
Newer Older
Chen Chen's avatar
Chen Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Chen Chen's avatar
Chen Chen committed
15
16
17
18
19
20
21
22
23
24
"""Keras Layers for BERT-specific preprocessing."""
from typing import Any, Dict, List, Optional, Union

from absl import logging
import tensorflow as tf

try:
  import tensorflow_text as text  # pylint: disable=g-import-not-at-top
except ImportError:
  text = None
Chen Chen's avatar
Chen Chen committed
25
26
27
except tf.errors.NotFoundError as e:
  logging.warn("Encountered error when importing tensorflow_text: %s", e)
  text = None
Chen Chen's avatar
Chen Chen committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58


def _check_if_tf_text_installed():
  if text is None:
    raise ImportError("import tensorflow_text failed, please install "
                      "'tensorflow-text-nightly'.")


def _truncate_row_lengths(ragged_tensor: tf.RaggedTensor,
                          new_lengths: tf.Tensor) -> tf.RaggedTensor:
  """Truncates the rows of `ragged_tensor` to the given row lengths."""
  new_lengths = tf.broadcast_to(new_lengths,
                                ragged_tensor.bounding_shape()[0:1])
  def fn(x):
    row, new_length = x
    return row[0:new_length]
  fn_dtype = tf.RaggedTensorSpec(dtype=ragged_tensor.dtype,
                                 ragged_rank=ragged_tensor.ragged_rank - 1)
  result = tf.map_fn(fn, (ragged_tensor, new_lengths), dtype=fn_dtype)
  # Work around broken shape propagation: without this, result has unknown rank.
  flat_values_shape = [None] * ragged_tensor.flat_values.shape.rank
  result = result.with_flat_values(
      tf.ensure_shape(result.flat_values, flat_values_shape))

  return result


class BertTokenizer(tf.keras.layers.Layer):
  """Wraps BertTokenizer with pre-defined vocab as a Keras Layer.

  Attributes:
59
60
61
    tokenize_with_offsets: If true, calls
      `text.BertTokenizer.tokenize_with_offsets()` instead of plain
      `text.BertTokenizer.tokenize()` and outputs a triple of
62
63
      `(tokens, start_offsets, limit_offsets)`.
    raw_table_access: An object with methods `.lookup(keys) and `.size()`
Chen Chen's avatar
Chen Chen committed
64
      that operate on the raw lookup table of tokens. It can be used to
65
      look up special token synbols like `[MASK]`.
Chen Chen's avatar
Chen Chen committed
66
67
68
69
70
71
72
  """

  def __init__(self, *,
               vocab_file: str,
               lower_case: bool,
               tokenize_with_offsets: bool = False,
               **kwargs):
73
    """Initialize a `BertTokenizer` layer.
Chen Chen's avatar
Chen Chen committed
74
75
76
77
78

    Args:
      vocab_file: A Python string with the path of the vocabulary file.
        This is a text file with newline-separated wordpiece tokens.
        This layer initializes a lookup table from it that gets used with
79
80
        `text.BertTokenizer`.
      lower_case: A Python boolean forwarded to `text.BertTokenizer`.
Chen Chen's avatar
Chen Chen committed
81
82
        If true, input text is converted to lower case (where applicable)
        before tokenization. This must be set to match the way in which
83
        the `vocab_file` was created.
Chen Chen's avatar
Chen Chen committed
84
      tokenize_with_offsets: A Python boolean. If true, this layer calls
85
86
87
88
89
        `text.BertTokenizer.tokenize_with_offsets()` instead of plain
        `text.BertTokenizer.tokenize()` and outputs a triple of
        `(tokens, start_offsets, limit_offsets)`
        insead of just tokens.
      **kwargs: Standard arguments to `Layer()`.
Chen Chen's avatar
Chen Chen committed
90
91

    Raises:
92
      ImportError: If importing `tensorflow_text` failed.
Chen Chen's avatar
Chen Chen committed
93
94
95
96
    """
    _check_if_tf_text_installed()

    self.tokenize_with_offsets = tokenize_with_offsets
97
    # TODO(b/177326279): Stop storing the vocab table initializer as an
98
    # attribute when https://github.com/tensorflow/tensorflow/issues/46456
99
100
101
102
103
104
105
106
    # has been fixed in the TensorFlow versions of the TF Hub users that load
    # a SavedModel created from this layer. Due to that issue, loading such a
    # SavedModel forgets to add .vocab_table._initializer as a trackable
    # dependency of .vocab_table, so that saving it again to a second SavedModel
    # (e.g., the final model built using TF Hub) does not properly track
    # the ._vocab_table._initializer._filename as an Asset.
    self._vocab_table, self._vocab_initializer_donotuse = (
        self._create_vocab_table_and_initializer(vocab_file))
Chen Chen's avatar
Chen Chen committed
107
108
109
110
111
112
113
114
115
116
    self._special_tokens_dict = self._create_special_tokens_dict(
        self._vocab_table, vocab_file)
    super().__init__(**kwargs)
    self._bert_tokenizer = text.BertTokenizer(
        self._vocab_table, lower_case=lower_case)

  @property
  def vocab_size(self):
    return self._vocab_table.size()

117
  def _create_vocab_table_and_initializer(self, vocab_file):
Chen Chen's avatar
Chen Chen committed
118
119
120
121
    vocab_initializer = tf.lookup.TextFileInitializer(
        vocab_file,
        key_dtype=tf.string, key_index=tf.lookup.TextFileIndex.WHOLE_LINE,
        value_dtype=tf.int64, value_index=tf.lookup.TextFileIndex.LINE_NUMBER)
122
123
    vocab_table = tf.lookup.StaticHashTable(vocab_initializer, default_value=-1)
    return vocab_table, vocab_initializer
Chen Chen's avatar
Chen Chen committed
124
125

  def call(self, inputs: tf.Tensor):
126
    """Calls `text.BertTokenizer` on inputs.
Chen Chen's avatar
Chen Chen committed
127
128

    Args:
129
      inputs: A string Tensor of shape `(batch_size,)`.
Chen Chen's avatar
Chen Chen committed
130
131

    Returns:
132
133
      One or three of `RaggedTensors` if `tokenize_with_offsets` is False or
      True, respectively. These are
134
135
136
137
138
139
140
141
        tokens: A `RaggedTensor` of shape
          `[batch_size, (words), (pieces_per_word)]`
          and type int32. `tokens[i,j,k]` contains the k-th wordpiece of the
          j-th word in the i-th input.
        start_offsets, limit_offsets: If `tokenize_with_offsets` is True,
          RaggedTensors of type int64 with the same indices as tokens.
          Element `[i,j,k]` contains the byte offset at the start, or past the
          end, resp., for the k-th wordpiece of the j-th word in the i-th input.
Chen Chen's avatar
Chen Chen committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    """
    # Prepare to reshape the result to work around broken shape inference.
    batch_size = tf.shape(inputs)[0]
    def _reshape(rt):
      values = rt.values
      row_splits = rt.row_splits
      row_splits = tf.reshape(row_splits, [batch_size + 1])
      return tf.RaggedTensor.from_row_splits(values, row_splits)

    # Call the tokenizer.
    if self.tokenize_with_offsets:
      tokens, start_offsets, limit_offsets = (
          self._bert_tokenizer.tokenize_with_offsets(inputs))
      tokens = tf.cast(tokens, dtype=tf.int32)
      return _reshape(tokens), _reshape(start_offsets), _reshape(limit_offsets)
    else:
      tokens = self._bert_tokenizer.tokenize(inputs)
      tokens = tf.cast(tokens, dtype=tf.int32)
      return _reshape(tokens)

  def get_config(self):
    # Skip in tf.saved_model.save(); fail if called direcly.
164
    raise NotImplementedError("TODO(b/170480226): implement")
Chen Chen's avatar
Chen Chen committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

  def get_special_tokens_dict(self):
    """Returns dict of token ids, keyed by standard names for their purpose.

    Returns:
      A dict from Python strings to Python integers. Each key is a standard
      name for a special token describing its use. (For example, "padding_id"
      is what BERT traditionally calls "[PAD]" but others may call "<pad>".)
      The corresponding value is the integer token id. If a special token
      is not found, its entry is omitted from the dict.

      The supported keys and tokens are:
        * start_of_sequence_id: looked up from "[CLS]"
        * end_of_segment_id: looked up from "[SEP]"
        * padding_id: looked up form "[PAD]"
        * mask_id: looked up from "[MASK]"
181
        * vocab_size: one past the largest token id used
Chen Chen's avatar
Chen Chen committed
182
183
184
185
186
187
188
189
190
191
192
193
    """
    return self._special_tokens_dict

  def _create_special_tokens_dict(self, vocab_table, vocab_file):
    special_tokens = dict(start_of_sequence_id="[CLS]",
                          end_of_segment_id="[SEP]",
                          padding_id="[PAD]",
                          mask_id="[MASK]")
    with tf.init_scope():
      if tf.executing_eagerly():
        special_token_ids = vocab_table.lookup(
            tf.constant(list(special_tokens.values()), tf.string))
194
        vocab_size = vocab_table.size()
Chen Chen's avatar
Chen Chen committed
195
196
197
198
199
200
201
      else:
        # A blast from the past: non-eager init context while building Model.
        # This can happen with Estimator or tf.compat.v1.disable_v2_behavior().
        logging.warning(
            "Non-eager init context; computing "
            "BertTokenizer's special_tokens_dict in tf.compat.v1.Session")
        with tf.Graph().as_default():
202
203
          local_vocab_table, _ = self._create_vocab_table_and_initializer(
              vocab_file)
Chen Chen's avatar
Chen Chen committed
204
205
          special_token_ids_tensor = local_vocab_table.lookup(
              tf.constant(list(special_tokens.values()), tf.string))
206
          vocab_size_tensor = local_vocab_table.size()
Chen Chen's avatar
Chen Chen committed
207
208
209
          init_ops = [tf.compat.v1.initialize_all_tables()]
          with tf.compat.v1.Session() as sess:
            sess.run(init_ops)
210
211
212
213
214
            special_token_ids, vocab_size = sess.run(
                [special_token_ids_tensor, vocab_size_tensor])
      result = dict(
          vocab_size=int(vocab_size)  # Numpy to Python.
      )
Chen Chen's avatar
Chen Chen committed
215
      for k, v in zip(special_tokens, special_token_ids):
216
        v = int(v)
Chen Chen's avatar
Chen Chen committed
217
218
219
220
221
222
223
224
225
        if v >= 0:
          result[k] = v
        else:
          logging.warning("Could not find %s as token \"%s\" in vocab file %s",
                          k, special_tokens[k], vocab_file)
    return result


class SentencepieceTokenizer(tf.keras.layers.Layer):
226
  """Wraps `tf_text.SentencepieceTokenizer` as a Keras Layer.
Chen Chen's avatar
Chen Chen committed
227
228
229

  Attributes:
    tokenize_with_offsets: If true, calls
230
231
232
      `SentencepieceTokenizer.tokenize_with_offsets()`
      instead of plain `.tokenize()` and outputs a triple of
      `(tokens, start_offsets, limit_offsets)`.
Chen Chen's avatar
Chen Chen committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
  """

  def __init__(self,
               *,
               lower_case: bool,
               model_file_path: Optional[str] = None,
               model_serialized_proto: Optional[str] = None,
               tokenize_with_offsets: bool = False,
               nbest_size: int = 0,
               alpha: float = 1.0,
               strip_diacritics: bool = False,
               **kwargs):
    """Initializes a SentencepieceTokenizer layer.

    Args:
      lower_case: A Python boolean indicating whether to lowercase the string
        before tokenization. NOTE: New models are encouraged to build `*_cf`
        (case folding) normalization into the Sentencepiece model itself and
        avoid this extra step.
      model_file_path: A Python string with the path of the sentencepiece model.
        Exactly one of `model_file_path` and `model_serialized_proto` can be
        specified. In either case, the Keras model config for this layer will
        store the actual proto (not a filename passed here).
      model_serialized_proto: The sentencepiece model serialized proto string.
      tokenize_with_offsets: A Python boolean. If true, this layer calls
258
259
260
        `SentencepieceTokenizer.tokenize_with_offsets()` instead of
        plain `.tokenize()` and outputs a triple of
        `(tokens, start_offsets, limit_offsets)` insead of just tokens.
Chen Chen's avatar
Chen Chen committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        Note that when following `strip_diacritics` is set to True, returning
        offsets is not supported now.
      nbest_size: A scalar for sampling:
        nbest_size = {0,1}: No sampling is performed. (default)
        nbest_size > 1: samples from the nbest_size results.
        nbest_size < 0: assuming that nbest_size is infinite and samples
           from the all hypothesis (lattice) using
           forward-filtering-and-backward-sampling algorithm.
      alpha: A scalar for a smoothing parameter. Inverse temperature for
        probability rescaling.
      strip_diacritics: Whether to strip diacritics or not. Note that stripping
        diacritics requires additional text normalization and dropping bytes,
        which makes it impossible to keep track of the offsets now. Hence
        when `strip_diacritics` is set to True, we don't yet support
        `tokenize_with_offsets`. NOTE: New models are encouraged to put this
        into custom normalization rules for the Sentencepiece model itself to
        avoid this extra step and the limitation regarding offsets.
278
      **kwargs: standard arguments to `Layer()`.
Chen Chen's avatar
Chen Chen committed
279
280
281
282
283
284
285
286
287

    Raises:
      ImportError: if importing tensorflow_text failed.
    """
    _check_if_tf_text_installed()
    super().__init__(**kwargs)
    if bool(model_file_path) == bool(model_serialized_proto):
      raise ValueError("Exact one of `model_file_path` and "
                       "`model_serialized_proto` can be specified.")
288
    # TODO(b/181866850): Support tokenize_with_offsets for strip_diacritics=True
Chen Chen's avatar
Chen Chen committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    if tokenize_with_offsets and strip_diacritics:
      raise ValueError("`tokenize_with_offsets` is not supported when "
                       "`strip_diacritics` is set to True.")
    if model_file_path:
      self._model_serialized_proto = tf.io.gfile.GFile(model_file_path,
                                                       "rb").read()
    else:
      self._model_serialized_proto = model_serialized_proto

    self._lower_case = lower_case
    self.tokenize_with_offsets = tokenize_with_offsets
    self._nbest_size = nbest_size
    self._alpha = alpha
    self._strip_diacritics = strip_diacritics
    self._tokenizer = self._create_tokenizer()
    self._special_tokens_dict = self._create_special_tokens_dict()

  def _create_tokenizer(self):
    return text.SentencepieceTokenizer(
        model=self._model_serialized_proto,
        out_type=tf.int32,
        nbest_size=self._nbest_size,
        alpha=self._alpha)

  @property
  def vocab_size(self):
    return self._tokenizer.vocab_size()

  def call(self, inputs: tf.Tensor):
318
    """Calls `text.SentencepieceTokenizer` on inputs.
Chen Chen's avatar
Chen Chen committed
319
320

    Args:
321
      inputs: A string Tensor of shape `(batch_size,)`.
Chen Chen's avatar
Chen Chen committed
322
323
324
325

    Returns:
      One or three of RaggedTensors if tokenize_with_offsets is False or True,
      respectively. These are
326
327
328
329
330
      tokens: A RaggedTensor of shape `[batch_size, (pieces)]` and type `int32`.
        `tokens[i,j]` contains the j-th piece in the i-th input.
      start_offsets, limit_offsets: If `tokenize_with_offsets` is True,
        RaggedTensors of type `int64` with the same indices as tokens.
        Element `[i,j]` contains the byte offset at the start, or past the
Chen Chen's avatar
Chen Chen committed
331
332
333
334
        end, resp., for the j-th piece in the i-th input.
    """
    if self._strip_diacritics:
      if self.tokenize_with_offsets:
335
336
        raise ValueError("`tokenize_with_offsets` is not supported yet when "
                         "`strip_diacritics` is set to True (b/181866850).")
Chen Chen's avatar
Chen Chen committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
      inputs = text.normalize_utf8(inputs, "NFD")
      inputs = tf.strings.regex_replace(inputs, r"\p{Mn}", "")

    if self._lower_case:
      inputs = text.case_fold_utf8(inputs)

    # Prepare to reshape the result to work around broken shape inference.
    batch_size = tf.shape(inputs)[0]
    def _reshape(rt):
      values = rt.values
      row_splits = rt.row_splits
      row_splits = tf.reshape(row_splits, [batch_size + 1])
      return tf.RaggedTensor.from_row_splits(values, row_splits)

    # Call the tokenizer.
    if self.tokenize_with_offsets:
      tokens, start_offsets, limit_offsets = (
          self._tokenizer.tokenize_with_offsets(inputs))
      return _reshape(tokens), _reshape(start_offsets), _reshape(limit_offsets)
    else:
      tokens = self._tokenizer.tokenize(inputs)
      return _reshape(tokens)

  def get_config(self):
361
362
    # Skip in tf.saved_model.save(); fail if called direcly.
    raise NotImplementedError("TODO(b/170480226): implement")
Chen Chen's avatar
Chen Chen committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

  def get_special_tokens_dict(self):
    """Returns dict of token ids, keyed by standard names for their purpose.

    Returns:
      A dict from Python strings to Python integers. Each key is a standard
      name for a special token describing its use. (For example, "padding_id"
      is what Sentencepiece calls "<pad>" but others may call "[PAD]".)
      The corresponding value is the integer token id. If a special token
      is not found, its entry is omitted from the dict.

      The supported keys and tokens are:
        * start_of_sequence_id: looked up from "[CLS]"
        * end_of_segment_id: looked up from "[SEP]"
        * padding_id: looked up from "<pad>"
        * mask_id: looked up from "[MASK]"
379
        * vocab_size: one past the largest token id used
Chen Chen's avatar
Chen Chen committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    """
    return self._special_tokens_dict

  def _create_special_tokens_dict(self):
    special_tokens = dict(
        start_of_sequence_id=b"[CLS]",
        end_of_segment_id=b"[SEP]",
        padding_id=b"<pad>",
        mask_id=b"[MASK]")
    with tf.init_scope():
      if tf.executing_eagerly():
        special_token_ids = self._tokenizer.string_to_id(
            tf.constant(list(special_tokens.values()), tf.string))
        inverse_tokens = self._tokenizer.id_to_string(special_token_ids)
394
        vocab_size = self._tokenizer.vocab_size()
Chen Chen's avatar
Chen Chen committed
395
396
397
398
399
400
401
402
403
404
405
406
      else:
        # A blast from the past: non-eager init context while building Model.
        # This can happen with Estimator or tf.compat.v1.disable_v2_behavior().
        logging.warning(
            "Non-eager init context; computing SentencepieceTokenizer's "
            "special_tokens_dict in tf.compat.v1.Session")
        with tf.Graph().as_default():
          local_tokenizer = self._create_tokenizer()
          special_token_ids_tensor = local_tokenizer.string_to_id(
              tf.constant(list(special_tokens.values()), tf.string))
          inverse_tokens_tensor = local_tokenizer.id_to_string(
              special_token_ids_tensor)
407
          vocab_size_tensor = local_tokenizer.vocab_size()
Chen Chen's avatar
Chen Chen committed
408
          with tf.compat.v1.Session() as sess:
409
410
411
412
413
414
            special_token_ids, inverse_tokens, vocab_size = sess.run(
                [special_token_ids_tensor, inverse_tokens_tensor,
                 vocab_size_tensor])
      result = dict(
          vocab_size=int(vocab_size)  # Numpy to Python.
      )
Chen Chen's avatar
Chen Chen committed
415
416
417
418
      for name, token_id, inverse_token in zip(special_tokens,
                                               special_token_ids,
                                               inverse_tokens):
        if special_tokens[name] == inverse_token:
419
          result[name] = int(token_id)
Chen Chen's avatar
Chen Chen committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        else:
          logging.warning(
              "Could not find %s as token \"%s\" in sentencepiece model, "
              "got \"%s\"", name, special_tokens[name], inverse_token)
    return result


class BertPackInputs(tf.keras.layers.Layer):
  """Packs tokens into model inputs for BERT."""

  def __init__(self,
               seq_length,
               *,
               start_of_sequence_id=None,
               end_of_segment_id=None,
               padding_id=None,
               special_tokens_dict=None,
               truncator="round_robin",
               **kwargs):
439
    """Initializes with a target `seq_length`, relevant token ids and truncator.
Chen Chen's avatar
Chen Chen committed
440
441
442
443
444
445
446
447
448
449
450
451

    Args:
      seq_length: The desired output length. Must not exceed the max_seq_length
        that was fixed at training time for the BERT model receiving the inputs.
      start_of_sequence_id: The numeric id of the token that is to be placed
        at the start of each sequence (called "[CLS]" for BERT).
      end_of_segment_id: The numeric id of the token that is to be placed
        at the end of each input segment (called "[SEP]" for BERT).
      padding_id: The numeric id of the token that is to be placed into the
        unused positions after the last segment in the sequence
        (called "[PAD]" for BERT).
      special_tokens_dict: Optionally, a dict from Python strings to Python
452
453
        integers that contains values for `start_of_sequence_id`,
        `end_of_segment_id` and `padding_id`. (Further values in the dict are
Chen Chen's avatar
Chen Chen committed
454
455
456
        silenty ignored.) If this is passed, separate *_id arguments must be
        omitted.
      truncator: The algorithm to truncate a list of batched segments to fit a
457
458
        per-example length limit. The value can be either `round_robin` or
        `waterfall`:
Chen Chen's avatar
Chen Chen committed
459
460
461
462
463
464
465
466
467
          (1) For "round_robin" algorithm, available space is assigned
          one token at a time in a round-robin fashion to the inputs that still
          need some, until the limit is reached. It currently only supports
          one or two segments.
          (2) For "waterfall" algorithm, the allocation of the budget is done
            using a "waterfall" algorithm that allocates quota in a
            left-to-right manner and fills up the buckets until we run out of
            budget. It support arbitrary number of segments.

468
      **kwargs: standard arguments to `Layer()`.
Chen Chen's avatar
Chen Chen committed
469
470

    Raises:
471
      ImportError: if importing `tensorflow_text` failed.
Chen Chen's avatar
Chen Chen committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
    """
    _check_if_tf_text_installed()
    super().__init__(**kwargs)
    self.seq_length = seq_length
    if truncator not in ("round_robin", "waterfall"):
      raise ValueError("Only 'round_robin' and 'waterfall' algorithms are "
                       "supported, but got %s" % truncator)
    self.truncator = truncator
    self._init_token_ids(
        start_of_sequence_id=start_of_sequence_id,
        end_of_segment_id=end_of_segment_id,
        padding_id=padding_id,
        special_tokens_dict=special_tokens_dict)

  def _init_token_ids(
      self, *,
      start_of_sequence_id,
      end_of_segment_id,
      padding_id,
      special_tokens_dict):
    usage = ("Must pass either all of start_of_sequence_id, end_of_segment_id, "
             "padding_id as arguments, or else a special_tokens_dict "
             "with those keys.")
    special_tokens_args = [start_of_sequence_id, end_of_segment_id, padding_id]
    if special_tokens_dict is None:
      if any(x is None for x in special_tokens_args):
        return ValueError(usage)
      self.start_of_sequence_id = int(start_of_sequence_id)
      self.end_of_segment_id = int(end_of_segment_id)
      self.padding_id = int(padding_id)
    else:
      if any(x is not None for x in special_tokens_args):
        return ValueError(usage)
      self.start_of_sequence_id = int(
          special_tokens_dict["start_of_sequence_id"])
      self.end_of_segment_id = int(special_tokens_dict["end_of_segment_id"])
      self.padding_id = int(special_tokens_dict["padding_id"])

  def get_config(self) -> Dict[str, Any]:
    config = super().get_config()
    config["seq_length"] = self.seq_length
    config["start_of_sequence_id"] = self.start_of_sequence_id
    config["end_of_segment_id"] = self.end_of_segment_id
    config["padding_id"] = self.padding_id
    config["truncator"] = self.truncator
    return config

  def call(self, inputs: Union[tf.RaggedTensor, List[tf.RaggedTensor]]):
    """Adds special tokens to pack a list of segments into BERT input Tensors.

    Args:
      inputs: A Python list of one or two RaggedTensors, each with the batched
        values one input segment. The j-th segment of the i-th input example
        consists of slice `inputs[j][i, ...]`.

    Returns:
      A nest of Tensors for use as input to the BERT TransformerEncoder.
    """
    # BertPackInputsSavedModelWrapper relies on only calling bert_pack_inputs()
    return BertPackInputs.bert_pack_inputs(
        inputs, self.seq_length,
        start_of_sequence_id=self.start_of_sequence_id,
        end_of_segment_id=self.end_of_segment_id,
        padding_id=self.padding_id,
        truncator=self.truncator)

  @staticmethod
  def bert_pack_inputs(inputs: Union[tf.RaggedTensor, List[tf.RaggedTensor]],
                       seq_length: Union[int, tf.Tensor],
                       start_of_sequence_id: Union[int, tf.Tensor],
                       end_of_segment_id: Union[int, tf.Tensor],
                       padding_id: Union[int, tf.Tensor],
                       truncator="round_robin"):
    """Freestanding equivalent of the BertPackInputs layer."""
    _check_if_tf_text_installed()
    # Sanitize inputs.
    if not isinstance(inputs, (list, tuple)):
      inputs = [inputs]
    if not inputs:
      raise ValueError("At least one input is required for packing")
    input_ranks = [rt.shape.rank for rt in inputs]
    if None in input_ranks or len(set(input_ranks)) > 1:
      raise ValueError("All inputs for packing must have the same known rank, "
                       "found ranks " + ",".join(input_ranks))
    # Flatten inputs to [batch_size, (tokens)].
    if input_ranks[0] > 2:
      inputs = [rt.merge_dims(1, -1) for rt in inputs]
    # In case inputs weren't truncated (as they should have been),
    # fall back to some ad-hoc truncation.
    num_special_tokens = len(inputs) + 1
    if truncator == "round_robin":
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
563
564
      trimmed_segments = text.RoundRobinTrimmer(seq_length -
                                                num_special_tokens).trim(inputs)
Chen Chen's avatar
Chen Chen committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
    elif truncator == "waterfall":
      trimmed_segments = text.WaterfallTrimmer(
          seq_length - num_special_tokens).trim(inputs)
    else:
      raise ValueError("Unsupported truncator: %s" % truncator)
    # Combine segments.
    segments_combined, segment_ids = text.combine_segments(
        trimmed_segments,
        start_of_sequence_id=start_of_sequence_id,
        end_of_segment_id=end_of_segment_id)
    # Pad to dense Tensors.
    input_word_ids, _ = text.pad_model_inputs(segments_combined, seq_length,
                                              pad_value=padding_id)
    input_type_ids, input_mask = text.pad_model_inputs(segment_ids, seq_length,
                                                       pad_value=0)
    # Work around broken shape inference.
    output_shape = tf.stack([
        inputs[0].nrows(out_type=tf.int32),  # batch_size
        tf.cast(seq_length, dtype=tf.int32)])
    def _reshape(t):
      return tf.reshape(t, output_shape)
    # Assemble nest of input tensors as expected by BERT TransformerEncoder.
    return dict(input_word_ids=_reshape(input_word_ids),
                input_mask=_reshape(input_mask),
                input_type_ids=_reshape(input_type_ids))