example_config.py 3.78 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Fan Yang's avatar
Fan Yang committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Example experiment configuration definition."""
import dataclasses
Fan Yang's avatar
Fan Yang committed
17
from typing import List
Fan Yang's avatar
Fan Yang committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization


@dataclasses.dataclass
class ExampleDataConfig(cfg.DataConfig):
  """Input config for training. Add more fields as needed."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 10000
  cycle_length: int = 10
  file_type: str = 'tfrecord'


@dataclasses.dataclass
class ExampleModel(hyperparams.Config):
  """The model config. Used by build_example_model function."""
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)


@dataclasses.dataclass
class Losses(hyperparams.Config):
  l2_weight_decay: float = 0.0


@dataclasses.dataclass
class Evaluation(hyperparams.Config):
  top_k: int = 5


@dataclasses.dataclass
class ExampleTask(cfg.TaskConfig):
  """The task config."""
  model: ExampleModel = ExampleModel()
  train_data: ExampleDataConfig = ExampleDataConfig(is_training=True)
  validation_data: ExampleDataConfig = ExampleDataConfig(is_training=False)
  losses: Losses = Losses()
  evaluation: Evaluation = Evaluation()


@exp_factory.register_config_factory('tf_vision_example_experiment')
def tf_vision_example_experiment() -> cfg.ExperimentConfig:
  """Definition of a full example experiment."""
  train_batch_size = 256
  eval_batch_size = 256
  steps_per_epoch = 10
  config = cfg.ExperimentConfig(
      task=ExampleTask(
          model=ExampleModel(num_classes=10, input_size=[128, 128, 3]),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=ExampleDataConfig(
              input_path='/path/to/train*',
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=ExampleDataConfig(
              input_path='/path/to/valid*',
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=90 * steps_per_epoch,
          validation_steps=steps_per_epoch,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'cosine',
                  'cosine': {
                      'initial_learning_rate': 1.6,
                      'decay_steps': 350 * steps_per_epoch
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config