semantic_segmentation.py 10.4 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
"""Semantic segmentation configuration definition."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
import os
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
19
from typing import List, Optional, Union

Abdullah Rashwan's avatar
Abdullah Rashwan committed
20
import dataclasses
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
import numpy as np

Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.modeling.hyperparams import config_definitions as cfg
from official.vision.beta.configs import backbones
from official.vision.beta.configs import common
from official.vision.beta.configs import decoders


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 1000
  cycle_length: int = 10
  resize_eval_groundtruth: bool = True
  groundtruth_padded_size: List[int] = dataclasses.field(default_factory=list)
  aug_scale_min: float = 1.0
  aug_scale_max: float = 1.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
45
  drop_remainder: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
46
47
48
49
50
51
52
53


@dataclasses.dataclass
class SegmentationHead(hyperparams.Config):
  level: int = 3
  num_convs: int = 2
  num_filters: int = 256
  upsample_factor: int = 1
Abdullah Rashwan's avatar
Abdullah Rashwan committed
54
55
56
57
  feature_fusion: Optional[str] = None  # None, or deeplabv3plus
  # deeplabv3plus feature fusion params
  low_level: int = 2
  low_level_num_filters: int = 48
Abdullah Rashwan's avatar
Abdullah Rashwan committed
58
59
60


@dataclasses.dataclass
Abdullah Rashwan's avatar
Abdullah Rashwan committed
61
62
class SemanticSegmentationModel(hyperparams.Config):
  """Semantic segmentation model config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  min_level: int = 3
  max_level: int = 6
  head: SegmentationHead = SegmentationHead()
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  decoder: decoders.Decoder = decoders.Decoder(type='identity')
  norm_activation: common.NormActivation = common.NormActivation()


@dataclasses.dataclass
class Losses(hyperparams.Config):
  label_smoothing: float = 0.1
  ignore_label: int = 255
  class_weights: List[float] = dataclasses.field(default_factory=list)
  l2_weight_decay: float = 0.0
  use_groundtruth_dimension: bool = True


@dataclasses.dataclass
Abdullah Rashwan's avatar
Abdullah Rashwan committed
84
class SemanticSegmentationTask(cfg.TaskConfig):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
85
  """The model config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
86
  model: SemanticSegmentationModel = SemanticSegmentationModel()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
87
88
89
90
91
92
93
94
95
96
97
98
99
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
  gradient_clip_norm: float = 0.0
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: Union[
      str, List[str]] = 'all'  # all, backbone, and/or decoder


@exp_factory.register_config_factory('semantic_segmentation')
def semantic_segmentation() -> cfg.ExperimentConfig:
  """Semantic segmentation general."""
  return cfg.ExperimentConfig(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
100
      task=SemanticSegmentationModel(),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

# PASCAL VOC 2012 Dataset
PASCAL_TRAIN_EXAMPLES = 10582
PASCAL_VAL_EXAMPLES = 1449
PASCAL_INPUT_PATH_BASE = 'pascal_voc_seg'


@exp_factory.register_config_factory('seg_deeplabv3_pascal')
def seg_deeplabv3_pascal() -> cfg.ExperimentConfig:
  """Image segmentation on imagenet with resnet deeplabv3."""
  train_batch_size = 16
  eval_batch_size = 8
  steps_per_epoch = PASCAL_TRAIN_EXAMPLES // train_batch_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
119
120
121
  output_stride = 8
  aspp_dilation_rates = [12, 24, 36]  # [6, 12, 18] if output_stride = 16
  level = int(np.math.log2(output_stride))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
122
  config = cfg.ExperimentConfig(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
123
124
      task=SemanticSegmentationTask(
          model=SemanticSegmentationModel(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
125
126
127
128
129
              num_classes=21,
              # TODO(arashwan): test changing size to 513 to match deeplab.
              input_size=[512, 512, 3],
              backbone=backbones.Backbone(
                  type='dilated_resnet', dilated_resnet=backbones.DilatedResNet(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
130
                      model_id=50, output_stride=output_stride)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
131
132
              decoder=decoders.Decoder(
                  type='aspp', aspp=decoders.ASPP(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
                      level=level, dilation_rates=aspp_dilation_rates)),
              head=SegmentationHead(level=level, num_convs=0),
              norm_activation=common.NormActivation(
                  activation='swish',
                  norm_momentum=0.9997,
                  norm_epsilon=1e-3,
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'train_aug*'),
              is_training=True,
              global_batch_size=train_batch_size,
              aug_scale_min=0.5,
              aug_scale_max=2.0),
          validation_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size,
              resize_eval_groundtruth=False,
              groundtruth_padded_size=[512, 512],
              drop_remainder=False),
          # resnet50
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/deeplab/deeplab_resnet50_imagenet/ckpt-62400',
          init_checkpoint_modules='backbone'),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=45 * steps_per_epoch,
          validation_steps=PASCAL_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'polynomial',
                  'polynomial': {
                      'initial_learning_rate': 0.007,
                      'decay_steps': 45 * steps_per_epoch,
                      'end_learning_rate': 0.0,
                      'power': 0.9
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('seg_deeplabv3plus_pascal')
def seg_deeplabv3plus_pascal() -> cfg.ExperimentConfig:
  """Image segmentation on imagenet with resnet deeplabv3+."""
  train_batch_size = 16
  eval_batch_size = 8
  steps_per_epoch = PASCAL_TRAIN_EXAMPLES // train_batch_size
  output_stride = 16
  aspp_dilation_rates = [6, 12, 18]  # [12, 24, 36] if output_stride = 8
  level = int(np.math.log2(output_stride))
  config = cfg.ExperimentConfig(
      task=SemanticSegmentationTask(
          model=SemanticSegmentationModel(
              num_classes=21,
              input_size=[512, 512, 3],
              backbone=backbones.Backbone(
                  type='dilated_resnet', dilated_resnet=backbones.DilatedResNet(
                      model_id=50, output_stride=output_stride)),
              decoder=decoders.Decoder(
                  type='aspp',
                  aspp=decoders.ASPP(
                      level=level, dilation_rates=aspp_dilation_rates)),
              head=SegmentationHead(
                  level=level,
                  num_convs=2,
                  feature_fusion='deeplabv3plus',
                  low_level=2,
                  low_level_num_filters=48),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
              norm_activation=common.NormActivation(
                  activation='swish',
                  norm_momentum=0.9997,
                  norm_epsilon=1e-3,
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'train_aug*'),
              is_training=True,
              global_batch_size=train_batch_size,
              aug_scale_min=0.5,
              aug_scale_max=2.0),
          validation_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size,
              resize_eval_groundtruth=False,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
240
241
              groundtruth_padded_size=[512, 512],
              drop_remainder=False),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
          # resnet50
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/deeplab/deeplab_resnet50_imagenet/ckpt-62400',
          init_checkpoint_modules='backbone'),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=45 * steps_per_epoch,
          validation_steps=PASCAL_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'polynomial',
                  'polynomial': {
                      'initial_learning_rate': 0.007,
                      'decay_steps': 45 * steps_per_epoch,
                      'end_learning_rate': 0.0,
                      'power': 0.9
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config