common.py 16 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Common util functions and classes used by both keras cifar and imagenet."""
16
17
18
19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
import os
21

Toby Boyd's avatar
Toby Boyd committed
22
23
from absl import flags
import tensorflow as tf
24

25
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2
26
import tensorflow_model_optimization as tfmot
27
from official.utils.flags import core as flags_core
28
from official.utils.misc import keras_utils
29

Shining Sun's avatar
Shining Sun committed
30
FLAGS = flags.FLAGS
Shining Sun's avatar
Shining Sun committed
31
BASE_LEARNING_RATE = 0.1  # This matches Jing's version.
32
TRAIN_TOP_1 = 'training_accuracy_top_1'
Hongkun Yu's avatar
Hongkun Yu committed
33
LR_SCHEDULE = [  # (multiplier, epoch to start) tuples
Hongkun Yu's avatar
Hongkun Yu committed
34
35
36
37
    (1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
]


38
39
40
41
class PiecewiseConstantDecayWithWarmup(
    tf.keras.optimizers.schedules.LearningRateSchedule):
  """Piecewise constant decay with warmup schedule."""

Hongkun Yu's avatar
Hongkun Yu committed
42
43
44
45
46
47
48
49
  def __init__(self,
               batch_size,
               epoch_size,
               warmup_epochs,
               boundaries,
               multipliers,
               compute_lr_on_cpu=True,
               name=None):
50
51
52
53
54
55
    super(PiecewiseConstantDecayWithWarmup, self).__init__()
    if len(boundaries) != len(multipliers) - 1:
      raise ValueError('The length of boundaries must be 1 less than the '
                       'length of multipliers')

    base_lr_batch_size = 256
Zongwei Zhou's avatar
Zongwei Zhou committed
56
    steps_per_epoch = epoch_size // batch_size
57
58

    self.rescaled_lr = BASE_LEARNING_RATE * batch_size / base_lr_batch_size
Zongwei Zhou's avatar
Zongwei Zhou committed
59
    self.step_boundaries = [float(steps_per_epoch) * x for x in boundaries]
60
    self.lr_values = [self.rescaled_lr * m for m in multipliers]
Zongwei Zhou's avatar
Zongwei Zhou committed
61
    self.warmup_steps = warmup_epochs * steps_per_epoch
62
63
64
    self.compute_lr_on_cpu = compute_lr_on_cpu
    self.name = name

65
    self.learning_rate_ops_cache = {}
66
67
68
69
70
71
72
73

  def __call__(self, step):
    if tf.executing_eagerly():
      return self._get_learning_rate(step)

    # In an eager function or graph, the current implementation of optimizer
    # repeatedly call and thus create ops for the learning rate schedule. To
    # avoid this, we cache the ops if not executing eagerly.
74
75
    graph = tf.compat.v1.get_default_graph()
    if graph not in self.learning_rate_ops_cache:
76
77
      if self.compute_lr_on_cpu:
        with tf.device('/device:CPU:0'):
78
          self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
79
      else:
80
81
        self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
    return self.learning_rate_ops_cache[graph]
82
83
84

  def _get_learning_rate(self, step):
    """Compute learning rate at given step."""
ayushmankumar7's avatar
ayushmankumar7 committed
85
    with tf.name_scope('PiecewiseConstantDecayWithWarmup'):
Hongkun Yu's avatar
Hongkun Yu committed
86

87
88
89
      def warmup_lr(step):
        return self.rescaled_lr * (
            tf.cast(step, tf.float32) / tf.cast(self.warmup_steps, tf.float32))
Hongkun Yu's avatar
Hongkun Yu committed
90

91
      def piecewise_lr(step):
Hongkun Yu's avatar
Hongkun Yu committed
92
93
94
95
        return tf.compat.v1.train.piecewise_constant(step, self.step_boundaries,
                                                     self.lr_values)

      return tf.cond(step < self.warmup_steps, lambda: warmup_lr(step),
96
97
98
99
100
101
102
103
104
105
106
107
108
109
                     lambda: piecewise_lr(step))

  def get_config(self):
    return {
        'rescaled_lr': self.rescaled_lr,
        'step_boundaries': self.step_boundaries,
        'lr_values': self.lr_values,
        'warmup_steps': self.warmup_steps,
        'compute_lr_on_cpu': self.compute_lr_on_cpu,
        'name': self.name
    }


def get_optimizer(learning_rate=0.1):
110
111
  """Returns optimizer to use."""
  # The learning_rate is overwritten at the beginning of each step by callback.
112
  return gradient_descent_v2.SGD(learning_rate=learning_rate, momentum=0.9)
113
114


Hongkun Yu's avatar
Hongkun Yu committed
115
116
117
def get_callbacks(pruning_method=None,
                  enable_checkpoint_and_export=False,
                  model_dir=None):
118
  """Returns common callbacks."""
119
120
121
122
  time_callback = keras_utils.TimeHistory(
      FLAGS.batch_size,
      FLAGS.log_steps,
      logdir=FLAGS.model_dir if FLAGS.enable_tensorboard else None)
123
124
  callbacks = [time_callback]

125
126
  if FLAGS.enable_tensorboard:
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
Hongkun Yu's avatar
Hongkun Yu committed
127
        log_dir=FLAGS.model_dir, profile_batch=FLAGS.profile_steps)
128
129
    callbacks.append(tensorboard_callback)

130
131
132
133
  is_pruning_enabled = pruning_method is not None
  if is_pruning_enabled:
    callbacks.append(tfmot.sparsity.keras.UpdatePruningStep())
    if model_dir is not None:
Hongkun Yu's avatar
Hongkun Yu committed
134
135
136
      callbacks.append(
          tfmot.sparsity.keras.PruningSummaries(
              log_dir=model_dir, profile_batch=0))
137
138
139
140
141

  if enable_checkpoint_and_export:
    if model_dir is not None:
      ckpt_full_path = os.path.join(model_dir, 'model.ckpt-{epoch:04d}')
      callbacks.append(
Hongkun Yu's avatar
Hongkun Yu committed
142
143
          tf.keras.callbacks.ModelCheckpoint(
              ckpt_full_path, save_weights_only=True))
144
145
146
147
  return callbacks


def build_stats(history, eval_output, callbacks):
148
149
150
151
152
153
154
  """Normalizes and returns dictionary of stats.

  Args:
    history: Results of the training step. Supports both categorical_accuracy
      and sparse_categorical_accuracy.
    eval_output: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
155
156
    callbacks: a list of callbacks which might include a time history callback
      used during keras.fit.
157
158
159
160
161
162

  Returns:
    Dictionary of normalized results.
  """
  stats = {}
  if eval_output:
163
164
    stats['accuracy_top_1'] = float(eval_output[1])
    stats['eval_loss'] = float(eval_output[0])
165
166
167
  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
168
    stats['loss'] = float(train_hist['loss'][-1])
169
170
    # Gets top_1 training accuracy.
    if 'categorical_accuracy' in train_hist:
171
      stats[TRAIN_TOP_1] = float(train_hist['categorical_accuracy'][-1])
172
    elif 'sparse_categorical_accuracy' in train_hist:
173
      stats[TRAIN_TOP_1] = float(train_hist['sparse_categorical_accuracy'][-1])
Allen Wang's avatar
Allen Wang committed
174
175
    elif 'accuracy' in train_hist:
      stats[TRAIN_TOP_1] = float(train_hist['accuracy'][-1])
176

177
178
179
180
181
182
183
184
185
  if not callbacks:
    return stats

  # Look for the time history callback which was used during keras.fit
  for callback in callbacks:
    if isinstance(callback, keras_utils.TimeHistory):
      timestamp_log = callback.timestamp_log
      stats['step_timestamp_log'] = timestamp_log
      stats['train_finish_time'] = callback.train_finish_time
186
187
188
      if callback.epoch_runtime_log:
        stats['avg_exp_per_second'] = callback.average_examples_per_second

189
190
191
  return stats


Hongkun Yu's avatar
Hongkun Yu committed
192
193
194
195
def define_keras_flags(dynamic_loss_scale=True,
                       model=False,
                       optimizer=False,
                       pretrained_filepath=False):
196
  """Define flags for Keras models."""
Hongkun Yu's avatar
Hongkun Yu committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
  flags_core.define_base(
      clean=True,
      num_gpu=True,
      run_eagerly=True,
      train_epochs=True,
      epochs_between_evals=True,
      distribution_strategy=True)
  flags_core.define_performance(
      num_parallel_calls=False,
      synthetic_data=True,
      dtype=True,
      all_reduce_alg=True,
      num_packs=True,
      tf_gpu_thread_mode=True,
      datasets_num_private_threads=True,
      dynamic_loss_scale=dynamic_loss_scale,
      loss_scale=True,
      fp16_implementation=True,
      tf_data_experimental_slack=True,
      enable_xla=True,
      training_dataset_cache=True)
218
219
  flags_core.define_image()
  flags_core.define_benchmark()
220
  flags_core.define_distribution()
221
  flags.adopt_module_key_flags(flags_core)
222

Shining Sun's avatar
Shining Sun committed
223
  flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
224
  flags.DEFINE_boolean(name='skip_eval', default=False, help='Skip evaluation?')
225
226
227
  # TODO(b/135607288): Remove this flag once we understand the root cause of
  # slowdown when setting the learning phase in Keras backend.
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
228
229
      name='set_learning_phase_to_train',
      default=True,
230
231
      help='If skip eval, also set Keras learning phase to 1 (training).')
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
232
233
      name='explicit_gpu_placement',
      default=False,
234
235
      help='If not using distribution strategy, explicitly set device scope '
      'for the Keras training loop.')
236
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
      name='use_trivial_model',
      default=False,
      help='Whether to use a trivial Keras model.')
  flags.DEFINE_boolean(
      name='report_accuracy_metrics',
      default=True,
      help='Report metrics during training and evaluation.')
  flags.DEFINE_boolean(
      name='use_tensor_lr',
      default=True,
      help='Use learning rate tensor instead of a callback.')
  flags.DEFINE_boolean(
      name='enable_tensorboard',
      default=False,
251
      help='Whether to enable Tensorboard callback.')
Hongkun Yu's avatar
Hongkun Yu committed
252
  flags.DEFINE_string(
Hongkun Yu's avatar
Hongkun Yu committed
253
254
      name='profile_steps',
      default=None,
Hongkun Yu's avatar
Hongkun Yu committed
255
256
257
258
259
260
      help='Save profiling data to model dir at given range of global steps. The '
      'value must be a comma separated pair of positive integers, specifying '
      'the first and last step to profile. For example, "--profile_steps=2,4" '
      'triggers the profiler to process 3 steps, starting from the 2nd step. '
      'Note that profiler has a non-trivial performance overhead, and the '
      'output file can be gigantic if profiling many steps.')
Shining Sun's avatar
Shining Sun committed
261
  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
262
263
      name='train_steps',
      default=None,
264
      help='The number of steps to run for training. If it is larger than '
265
266
      '# batches per epoch, then use # batches per epoch. This flag will be '
      'ignored if train_epochs is set to be larger than 1. ')
267
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
268
269
      name='batchnorm_spatial_persistent',
      default=True,
270
      help='Enable the spacial persistent mode for CuDNN batch norm kernel.')
271
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
272
273
      name='enable_get_next_as_optional',
      default=False,
274
      help='Enable get_next_as_optional behavior in DistributedIterator.')
Hongkun Yu's avatar
Hongkun Yu committed
275
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
276
277
      name='enable_checkpoint_and_export',
      default=False,
Hongkun Yu's avatar
Hongkun Yu committed
278
      help='Whether to enable a checkpoint callback and export the savedmodel.')
Hongkun Yu's avatar
Hongkun Yu committed
279
  flags.DEFINE_string(name='tpu', default='', help='TPU address to connect to.')
Jing Li's avatar
Jing Li committed
280
  flags.DEFINE_integer(
281
      name='steps_per_loop',
282
      default=None,
283
      help='Number of steps per training loop. Only training step happens '
Jing Li's avatar
Jing Li committed
284
285
      'inside the loop. Callbacks will not be called inside. Will be capped at '
      'steps per epoch.')
286
287
288
289
290
291
  flags.DEFINE_boolean(
      name='use_tf_while_loop',
      default=True,
      help='Whether to build a tf.while_loop inside the training loop on the '
      'host. Setting it to True is critical to have peak performance on '
      'TPU.')
Shining Sun's avatar
Shining Sun committed
292

293
294
295
296
  if model:
    flags.DEFINE_string('model', 'resnet50_v1.5',
                        'Name of model preset. (mobilenet, resnet50_v1.5)')
  if optimizer:
Hongkun Yu's avatar
Hongkun Yu committed
297
298
299
    flags.DEFINE_string(
        'optimizer', 'resnet50_default', 'Name of optimizer preset. '
        '(mobilenet_default, resnet50_default)')
Jaehong Kim's avatar
Jaehong Kim committed
300
    # TODO(kimjaehong): Replace as general hyper-params not only for mobilenet.
Hongkun Yu's avatar
Hongkun Yu committed
301
302
303
304
    flags.DEFINE_float(
        'initial_learning_rate_per_sample', 0.00007,
        'Initial value of learning rate per sample for '
        'mobilenet_default.')
Jaehong Kim's avatar
Jaehong Kim committed
305
306
307
308
    flags.DEFINE_float('lr_decay_factor', 0.94,
                       'Learning rate decay factor for mobilenet_default.')
    flags.DEFINE_float('num_epochs_per_decay', 2.5,
                       'Number of epochs per decay for mobilenet_default.')
309
  if pretrained_filepath:
Hongkun Yu's avatar
Hongkun Yu committed
310
    flags.DEFINE_string('pretrained_filepath', '', 'Pretrained file path.')
311

312

Allen Wang's avatar
Allen Wang committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
def get_synth_data(height, width, num_channels, num_classes, dtype):
  """Creates a set of synthetic random data.

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.

  Returns:
    A tuple of tensors representing the inputs and labels.

  """
  # Synthetic input should be within [0, 255].
  inputs = tf.random.truncated_normal([height, width, num_channels],
                                      dtype=dtype,
                                      mean=127,
                                      stddev=60,
                                      name='synthetic_inputs')
  labels = tf.random.uniform([1],
                             minval=0,
                             maxval=num_classes - 1,
                             dtype=tf.int32,
                             name='synthetic_labels')
  return inputs, labels


342
343
def define_pruning_flags():
  """Define flags for pruning methods."""
Hongkun Yu's avatar
Hongkun Yu committed
344
345
346
  flags.DEFINE_string(
      'pruning_method', None, 'Pruning method.'
      'None (no pruning) or polynomial_decay.')
347
348
349
350
  flags.DEFINE_float('pruning_initial_sparsity', 0.0,
                     'Initial sparsity for pruning.')
  flags.DEFINE_float('pruning_final_sparsity', 0.5,
                     'Final sparsity for pruning.')
Hongkun Yu's avatar
Hongkun Yu committed
351
352
353
  flags.DEFINE_integer('pruning_begin_step', 0, 'Begin step for pruning.')
  flags.DEFINE_integer('pruning_end_step', 100000, 'End step for pruning.')
  flags.DEFINE_integer('pruning_frequency', 100, 'Frequency for pruning.')
354
355


356
357
358
def define_clustering_flags():
  """Define flags for clustering methods."""
  flags.DEFINE_string('clustering_method', None,
359
                      'None (no clustering) or selective_clustering '
360
                      '(cluster last three Conv2D layers of the model).')
361

362

Hongkun Yu's avatar
Hongkun Yu committed
363
364
365
366
367
368
def get_synth_input_fn(height,
                       width,
                       num_channels,
                       num_classes,
                       dtype=tf.float32,
                       drop_remainder=True):
Shining Sun's avatar
Shining Sun committed
369
370
371
372
373
  """Returns an input function that returns a dataset with random data.

  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
Shining Sun's avatar
Shining Sun committed
374
  tuning the full input pipeline.
Shining Sun's avatar
Shining Sun committed
375
376
377
378
379
380
381
382

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.
383
384
    drop_remainder: A boolean indicates whether to drop the remainder of the
      batches. If True, the batch dimension will be static.
Shining Sun's avatar
Shining Sun committed
385
386
387
388
389

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
Hongkun Yu's avatar
Hongkun Yu committed
390

Shining Sun's avatar
Shining Sun committed
391
392
393
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
Hongkun Yu's avatar
Hongkun Yu committed
394
395
396
397
398
399
    inputs, labels = get_synth_data(
        height=height,
        width=width,
        num_channels=num_channels,
        num_classes=num_classes,
        dtype=dtype)
400
401
    # Cast to float32 for Keras model.
    labels = tf.cast(labels, dtype=tf.float32)
Shining Sun's avatar
Shining Sun committed
402
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
403
404

    # `drop_remainder` will make dataset produce outputs with known shapes.
405
    data = data.batch(batch_size, drop_remainder=drop_remainder)
406
    data = data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
Shining Sun's avatar
Shining Sun committed
407
408
409
    return data

  return input_fn
Shining Sun's avatar
Shining Sun committed
410
411


412
def set_cudnn_batchnorm_mode():
Toby Boyd's avatar
Toby Boyd committed
413
414
415
416
417
  """Set CuDNN batchnorm mode for better performance.

     Note: Spatial Persistent mode may lead to accuracy losses for certain
     models.
  """
418
419
420
  if FLAGS.batchnorm_spatial_persistent:
    os.environ['TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT'] = '1'
  else:
421
    os.environ.pop('TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT', None)