resnet_v1.py 14.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for the original form of Residual Networks.

The 'v1' residual networks (ResNets) implemented in this module were proposed
by:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385

Other variants were introduced in:
[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Identity Mappings in Deep Residual Networks. arXiv: 1603.05027

The networks defined in this module utilize the bottleneck building block of
[1] with projection shortcuts only for increasing depths. They employ batch
normalization *after* every weight layer. This is the architecture used by
MSRA in the Imagenet and MSCOCO 2016 competition models ResNet-101 and
ResNet-152. See [2; Fig. 1a] for a comparison between the current 'v1'
architecture and the alternative 'v2' architecture of [2] which uses batch
normalization *before* every weight layer in the so-called full pre-activation
units.

Typical use:

   from tensorflow.contrib.slim.nets import resnet_v1

ResNet-101 for image classification into 1000 classes:

   # inputs has shape [batch, 224, 224, 3]
   with slim.arg_scope(resnet_v1.resnet_arg_scope()):
      net, end_points = resnet_v1.resnet_v1_101(inputs, 1000, is_training=False)

ResNet-101 for semantic segmentation into 21 classes:

   # inputs has shape [batch, 513, 513, 3]
   with slim.arg_scope(resnet_v1.resnet_arg_scope()):
      net, end_points = resnet_v1.resnet_v1_101(inputs,
                                                21,
                                                is_training=False,
                                                global_pool=False,
                                                output_stride=16)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from nets import resnet_utils


resnet_arg_scope = resnet_utils.resnet_arg_scope
slim = tf.contrib.slim


@slim.add_arg_scope
def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1,
               outputs_collections=None, scope=None):
  """Bottleneck residual unit variant with BN after convolutions.

  This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
  its definition. Note that we use here the bottleneck variant which has an
  extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.

  Returns:
    The ResNet unit's output.
  """
  with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
    depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
      shortcut = slim.conv2d(inputs, depth, [1, 1], stride=stride,
                             activation_fn=None, scope='shortcut')

    residual = slim.conv2d(inputs, depth_bottleneck, [1, 1], stride=1,
                           scope='conv1')
    residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
                                        rate=rate, scope='conv2')
    residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                           activation_fn=None, scope='conv3')

    output = tf.nn.relu(shortcut + residual)

    return slim.utils.collect_named_outputs(outputs_collections,
                                            sc.original_name_scope,
                                            output)


def resnet_v1(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
derekjchow's avatar
derekjchow committed
122
              spatial_squeeze=False,
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
              reuse=None,
              scope=None):
  """Generator for v1 ResNet models.

  This function generates a family of ResNet v1 models. See the resnet_v1_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks. If None
      we return the features before the logit layer.
    is_training: whether is training or not.
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it.
Neal Wu's avatar
Neal Wu committed
162
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is
163
        of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
164
165
166
        To use this parameter, the input images must be smaller than 300x300
        pixels, in which case the output logit layer does not contain spatial
        information and can be removed.
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.

  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is None, then
      net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes is not None, net contains the pre-softmax
      activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
  with tf.variable_scope(scope, 'resnet_v1', [inputs], reuse=reuse) as sc:
    end_points_collection = sc.name + '_end_points'
    with slim.arg_scope([slim.conv2d, bottleneck,
                         resnet_utils.stack_blocks_dense],
                        outputs_collections=end_points_collection):
      with slim.arg_scope([slim.batch_norm], is_training=is_training):
        net = inputs
        if include_root_block:
          if output_stride is not None:
            if output_stride % 4 != 0:
              raise ValueError('The output_stride needs to be a multiple of 4.')
            output_stride /= 4
          net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
          net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
        net = resnet_utils.stack_blocks_dense(net, blocks, output_stride)
        if global_pool:
          # Global average pooling.
          net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True)
        if num_classes is not None:
          net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                            normalizer_fn=None, scope='logits')
206
207
          if spatial_squeeze:
            net = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
208
        # Convert end_points_collection into a dictionary of end_points.
derekjchow's avatar
derekjchow committed
209
210
        end_points = slim.utils.convert_collection_to_dict(
            end_points_collection)
211
        if num_classes is not None:
212
213
          end_points['predictions'] = slim.softmax(net, scope='predictions')
        return net, end_points
214
215
216
resnet_v1.default_image_size = 224


derekjchow's avatar
derekjchow committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
def resnet_v1_block(scope, base_depth, num_units, stride):
  """Helper function for creating a resnet_v1 bottleneck block.

  Args:
    scope: The scope of the block.
    base_depth: The depth of the bottleneck layer for each unit.
    num_units: The number of units in the block.
    stride: The stride of the block, implemented as a stride in the last unit.
      All other units have stride=1.

  Returns:
    A resnet_v1 bottleneck block.
  """
  return resnet_utils.Block(scope, bottleneck, [{
      'depth': base_depth * 4,
      'depth_bottleneck': base_depth,
      'stride': 1
  }] * (num_units - 1) + [{
      'depth': base_depth * 4,
      'depth_bottleneck': base_depth,
      'stride': stride
  }])


241
242
243
244
245
def resnet_v1_50(inputs,
                 num_classes=None,
                 is_training=True,
                 global_pool=True,
                 output_stride=None,
246
                 spatial_squeeze=True,
247
248
249
250
                 reuse=None,
                 scope='resnet_v1_50'):
  """ResNet-50 model of [1]. See resnet_v1() for arg and return description."""
  blocks = [
derekjchow's avatar
derekjchow committed
251
252
253
254
      resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
      resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
      resnet_v1_block('block3', base_depth=256, num_units=6, stride=2),
      resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
255
256
257
  ]
  return resnet_v1(inputs, blocks, num_classes, is_training,
                   global_pool=global_pool, output_stride=output_stride,
258
259
                   include_root_block=True, spatial_squeeze=spatial_squeeze,
                   reuse=reuse, scope=scope)
amirbar's avatar
amirbar committed
260
resnet_v1_50.default_image_size = resnet_v1.default_image_size
261
262
263
264
265
266
267


def resnet_v1_101(inputs,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
268
                  spatial_squeeze=True,
269
270
271
272
                  reuse=None,
                  scope='resnet_v1_101'):
  """ResNet-101 model of [1]. See resnet_v1() for arg and return description."""
  blocks = [
derekjchow's avatar
derekjchow committed
273
274
275
276
      resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
      resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
      resnet_v1_block('block3', base_depth=256, num_units=23, stride=2),
      resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
277
278
279
  ]
  return resnet_v1(inputs, blocks, num_classes, is_training,
                   global_pool=global_pool, output_stride=output_stride,
280
281
                   include_root_block=True, spatial_squeeze=spatial_squeeze,
                   reuse=reuse, scope=scope)
amirbar's avatar
amirbar committed
282
resnet_v1_101.default_image_size = resnet_v1.default_image_size
283
284
285
286
287
288
289


def resnet_v1_152(inputs,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
290
                  spatial_squeeze=True,
291
292
293
294
                  reuse=None,
                  scope='resnet_v1_152'):
  """ResNet-152 model of [1]. See resnet_v1() for arg and return description."""
  blocks = [
derekjchow's avatar
derekjchow committed
295
296
297
298
299
      resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
      resnet_v1_block('block2', base_depth=128, num_units=8, stride=2),
      resnet_v1_block('block3', base_depth=256, num_units=36, stride=2),
      resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
  ]
300
301
  return resnet_v1(inputs, blocks, num_classes, is_training,
                   global_pool=global_pool, output_stride=output_stride,
302
303
                   include_root_block=True, spatial_squeeze=spatial_squeeze,
                   reuse=reuse, scope=scope)
amirbar's avatar
amirbar committed
304
resnet_v1_152.default_image_size = resnet_v1.default_image_size
305
306
307
308
309
310
311


def resnet_v1_200(inputs,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
312
                  spatial_squeeze=True,
313
314
315
316
                  reuse=None,
                  scope='resnet_v1_200'):
  """ResNet-200 model of [2]. See resnet_v1() for arg and return description."""
  blocks = [
derekjchow's avatar
derekjchow committed
317
318
319
320
321
      resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
      resnet_v1_block('block2', base_depth=128, num_units=24, stride=2),
      resnet_v1_block('block3', base_depth=256, num_units=36, stride=2),
      resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
  ]
322
323
  return resnet_v1(inputs, blocks, num_classes, is_training,
                   global_pool=global_pool, output_stride=output_stride,
324
325
                   include_root_block=True, spatial_squeeze=spatial_squeeze,
                   reuse=reuse, scope=scope)
Neal Wu's avatar
Neal Wu committed
326
resnet_v1_200.default_image_size = resnet_v1.default_image_size