dataset_utils.py 4.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utilities for downloading and converting datasets."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
21
22
23
24
import sys
import tarfile

from six.moves import urllib
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import tensorflow as tf

LABELS_FILENAME = 'labels.txt'


def int64_feature(values):
  """Returns a TF-Feature of int64s.

  Args:
    values: A scalar or list of values.

  Returns:
    a TF-Feature.
  """
  if not isinstance(values, (tuple, list)):
    values = [values]
  return tf.train.Feature(int64_list=tf.train.Int64List(value=values))


def bytes_feature(values):
  """Returns a TF-Feature of bytes.

  Args:
    values: A string.

  Returns:
    a TF-Feature.
  """
  return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))


def image_to_tfexample(image_data, image_format, height, width, class_id):
  return tf.train.Example(features=tf.train.Features(feature={
      'image/encoded': bytes_feature(image_data),
      'image/format': bytes_feature(image_format),
      'image/class/label': int64_feature(class_id),
      'image/height': int64_feature(height),
      'image/width': int64_feature(width),
  }))


66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
def download_and_uncompress_tarball(tarball_url, dataset_dir):
  """Downloads the `tarball_url` and uncompresses it locally.

  Args:
    tarball_url: The URL of a tarball file.
    dataset_dir: The directory where the temporary files are stored.
  """
  filename = tarball_url.split('/')[-1]
  filepath = os.path.join(dataset_dir, filename)

  def _progress(count, block_size, total_size):
    sys.stdout.write('\r>> Downloading %s %.1f%%' % (
        filename, float(count * block_size) / float(total_size) * 100.0))
    sys.stdout.flush()
  filepath, _ = urllib.request.urlretrieve(tarball_url, filepath, _progress)
  print()
  statinfo = os.stat(filepath)
  print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
  tarfile.open(filepath, 'r:gz').extractall(dataset_dir)


87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
def write_label_file(labels_to_class_names, dataset_dir,
                     filename=LABELS_FILENAME):
  """Writes a file with the list of class names.

  Args:
    labels_to_class_names: A map of (integer) labels to class names.
    dataset_dir: The directory in which the labels file should be written.
    filename: The filename where the class names are written.
  """
  labels_filename = os.path.join(dataset_dir, filename)
  with tf.gfile.Open(labels_filename, 'w') as f:
    for label in labels_to_class_names:
      class_name = labels_to_class_names[label]
      f.write('%d:%s\n' % (label, class_name))


def has_labels(dataset_dir, filename=LABELS_FILENAME):
  """Specifies whether or not the dataset directory contains a label map file.

  Args:
    dataset_dir: The directory in which the labels file is found.
    filename: The filename where the class names are written.

  Returns:
    `True` if the labels file exists and `False` otherwise.
  """
  return tf.gfile.Exists(os.path.join(dataset_dir, filename))


def read_label_file(dataset_dir, filename=LABELS_FILENAME):
  """Reads the labels file and returns a mapping from ID to class name.

  Args:
    dataset_dir: The directory in which the labels file is found.
    filename: The filename where the class names are written.

  Returns:
    A map from a label (integer) to class name.
  """
  labels_filename = os.path.join(dataset_dir, filename)
127
  with tf.gfile.Open(labels_filename, 'rb') as f:
128
    lines = f.read().decode()
129
130
131
132
133
134
135
136
  lines = lines.split('\n')
  lines = filter(None, lines)

  labels_to_class_names = {}
  for line in lines:
    index = line.index(':')
    labels_to_class_names[int(line[:index])] = line[index+1:]
  return labels_to_class_names