box_predictor.proto 3.45 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
syntax = "proto2";

package object_detection.protos;

import "object_detection/protos/hyperparams.proto";


// Configuration proto for box predictor. See core/box_predictor.py for details.
message BoxPredictor {
  oneof box_predictor_oneof {
    ConvolutionalBoxPredictor convolutional_box_predictor = 1;
    MaskRCNNBoxPredictor mask_rcnn_box_predictor = 2;
    RfcnBoxPredictor rfcn_box_predictor = 3;
  }
}

// Configuration proto for Convolutional box predictor.
message ConvolutionalBoxPredictor {
  // Hyperparameters for convolution ops used in the box predictor.
  optional Hyperparams conv_hyperparams = 1;

  // Minumum feature depth prior to predicting box encodings and class
  // predictions.
  optional int32 min_depth = 2 [default = 0];

  // Maximum feature depth prior to predicting box encodings and class
  // predictions. If max_depth is set to 0, no additional feature map will be
  // inserted before location and class predictions.
  optional int32 max_depth = 3 [default = 0];

  // Number of the additional conv layers before the predictor.
  optional int32 num_layers_before_predictor = 4 [default = 0];

  // Whether to use dropout for class prediction.
  optional bool use_dropout = 5 [default = true];

  // Keep probability for dropout
  optional float dropout_keep_probability = 6 [default = 0.8];

  // Size of final convolution kernel. If the spatial resolution of the feature
  // map is smaller than the kernel size, then the kernel size is set to
  // min(feature_width, feature_height).
  optional int32 kernel_size = 7 [default = 1];

  // Size of the encoding for boxes.
  optional int32 box_code_size = 8 [default = 4];

  // Whether to apply sigmoid to the output of class predictions.
  // TODO: Do we need this since we have a post processing module.?
  optional bool apply_sigmoid_to_scores = 9 [default = false];
}

message MaskRCNNBoxPredictor {
  // Hyperparameters for fully connected ops used in the box predictor.
  optional Hyperparams fc_hyperparams = 1;

  // Whether to use dropout op prior to the both box and class predictions.
  optional bool use_dropout = 2 [default= false];

  // Keep probability for dropout. This is only used if use_dropout is true.
  optional float dropout_keep_probability = 3 [default = 0.5];

  // Size of the encoding for the boxes.
  optional int32 box_code_size = 4 [default = 4];

  // Hyperparameters for convolution ops used in the box predictor.
  optional Hyperparams conv_hyperparams = 5;

  // Whether to predict instance masks inside detection boxes.
  optional bool predict_instance_masks = 6 [default = false];

  // The depth for the first conv2d_transpose op  applied to the
  // image_features in the mask prediciton branch
  optional int32 mask_prediction_conv_depth = 7 [default = 256];

  // Whether to predict keypoints inside detection boxes.
  optional bool predict_keypoints = 8 [default = false];
}

message RfcnBoxPredictor {
  // Hyperparameters for convolution ops used in the box predictor.
  optional Hyperparams conv_hyperparams = 1;

  // Bin sizes for RFCN crops.
  optional int32 num_spatial_bins_height = 2 [default = 3];

  optional int32 num_spatial_bins_width = 3 [default = 3];

  // Target depth to reduce the input image features to.
  optional int32 depth = 4 [default=1024];

  // Size of the encoding for the boxes.
  optional int32 box_code_size = 5 [default = 4];

  // Size to resize the rfcn crops to.
  optional int32 crop_height = 6 [default= 12];

  optional int32 crop_width = 7 [default=12];
}