losses_builder.py 5.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A function to build localization and classification losses from config."""

from object_detection.core import losses
from object_detection.protos import losses_pb2


def build(loss_config):
  """Build losses based on the config.

  Builds classification, localization losses and optionally a hard example miner
  based on the config.

  Args:
    loss_config: A losses_pb2.Loss object.

  Returns:
    classification_loss: Classification loss object.
    localization_loss: Localization loss object.
    classification_weight: Classification loss weight.
    localization_weight: Localization loss weight.
    hard_example_miner: Hard example miner object.
  """
  classification_loss = _build_classification_loss(
      loss_config.classification_loss)
  localization_loss = _build_localization_loss(
      loss_config.localization_loss)
  classification_weight = loss_config.classification_weight
  localization_weight = loss_config.localization_weight
  hard_example_miner = None
  if loss_config.HasField('hard_example_miner'):
    hard_example_miner = build_hard_example_miner(
        loss_config.hard_example_miner,
        classification_weight,
        localization_weight)
  return (classification_loss, localization_loss,
          classification_weight,
          localization_weight, hard_example_miner)


def build_hard_example_miner(config,
                             classification_weight,
                             localization_weight):
  """Builds hard example miner based on the config.

  Args:
    config: A losses_pb2.HardExampleMiner object.
    classification_weight: Classification loss weight.
    localization_weight: Localization loss weight.

  Returns:
    Hard example miner.

  """
  loss_type = None
  if config.loss_type == losses_pb2.HardExampleMiner.BOTH:
    loss_type = 'both'
  if config.loss_type == losses_pb2.HardExampleMiner.CLASSIFICATION:
    loss_type = 'cls'
  if config.loss_type == losses_pb2.HardExampleMiner.LOCALIZATION:
    loss_type = 'loc'

  max_negatives_per_positive = None
  num_hard_examples = None
  if config.max_negatives_per_positive > 0:
    max_negatives_per_positive = config.max_negatives_per_positive
  if config.num_hard_examples > 0:
    num_hard_examples = config.num_hard_examples
  hard_example_miner = losses.HardExampleMiner(
      num_hard_examples=num_hard_examples,
      iou_threshold=config.iou_threshold,
      loss_type=loss_type,
      cls_loss_weight=classification_weight,
      loc_loss_weight=localization_weight,
      max_negatives_per_positive=max_negatives_per_positive,
      min_negatives_per_image=config.min_negatives_per_image)
  return hard_example_miner


def _build_localization_loss(loss_config):
  """Builds a localization loss based on the loss config.

  Args:
    loss_config: A losses_pb2.LocalizationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
  if not isinstance(loss_config, losses_pb2.LocalizationLoss):
    raise ValueError('loss_config not of type losses_pb2.LocalizationLoss.')

  loss_type = loss_config.WhichOneof('localization_loss')

  if loss_type == 'weighted_l2':
    config = loss_config.weighted_l2
    return losses.WeightedL2LocalizationLoss(
        anchorwise_output=config.anchorwise_output)

  if loss_type == 'weighted_smooth_l1':
    config = loss_config.weighted_smooth_l1
    return losses.WeightedSmoothL1LocalizationLoss(
        anchorwise_output=config.anchorwise_output)

  if loss_type == 'weighted_iou':
    return losses.WeightedIOULocalizationLoss()

  raise ValueError('Empty loss config.')


def _build_classification_loss(loss_config):
  """Builds a classification loss based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
  if not isinstance(loss_config, losses_pb2.ClassificationLoss):
    raise ValueError('loss_config not of type losses_pb2.ClassificationLoss.')

  loss_type = loss_config.WhichOneof('classification_loss')

  if loss_type == 'weighted_sigmoid':
    config = loss_config.weighted_sigmoid
    return losses.WeightedSigmoidClassificationLoss(
        anchorwise_output=config.anchorwise_output)

  if loss_type == 'weighted_softmax':
    config = loss_config.weighted_softmax
    return losses.WeightedSoftmaxClassificationLoss(
        anchorwise_output=config.anchorwise_output)

  if loss_type == 'bootstrapped_sigmoid':
    config = loss_config.bootstrapped_sigmoid
    return losses.BootstrappedSigmoidClassificationLoss(
        alpha=config.alpha,
        bootstrap_type=('hard' if config.hard_bootstrap else 'soft'),
        anchorwise_output=config.anchorwise_output)

  raise ValueError('Empty loss config.')