"solve_ca_node2.sh" did not exist on "438819dbed56caf88d127d09450187beef74532b"
cifarnet_preprocessing.py 4.02 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Provides utilities to preprocess images in CIFAR-10.
16
17
18
19
20
21
22
23
24

"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

25
_PADDING = 4
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

slim = tf.contrib.slim


def preprocess_for_train(image,
                         output_height,
                         output_width,
                         padding=_PADDING):
  """Preprocesses the given image for training.

  Note that the actual resizing scale is sampled from
    [`resize_size_min`, `resize_size_max`].

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    padding: The amound of padding before and after each dimension of the image.

  Returns:
    A preprocessed image.
  """
48
49
50
51
52
53
  tf.image_summary('image', tf.expand_dims(image, 0))

  # Transform the image to floats.
  image = tf.to_float(image)
  if padding > 0:
    image = tf.pad(image, [[padding, padding], [padding, padding], [0, 0]])
54
  # Randomly crop a [height, width] section of the image.
55
  distorted_image = tf.random_crop(image,
56
57
58
59
60
                                   [output_height, output_width, 3])

  # Randomly flip the image horizontally.
  distorted_image = tf.image.random_flip_left_right(distorted_image)

61
62
  tf.image_summary('distorted_image', tf.expand_dims(distorted_image, 0))

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  # Because these operations are not commutative, consider randomizing
  # the order their operation.
  distorted_image = tf.image.random_brightness(distorted_image,
                                               max_delta=63)
  distorted_image = tf.image.random_contrast(distorted_image,
                                             lower=0.2, upper=1.8)
  # Subtract off the mean and divide by the variance of the pixels.
  return tf.image.per_image_whitening(distorted_image)


def preprocess_for_eval(image, output_height, output_width):
  """Preprocesses the given image for evaluation.

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.

  Returns:
    A preprocessed image.
  """
84
85
86
87
88
  tf.image_summary('image', tf.expand_dims(image, 0))
  # Transform the image to floats.
  image = tf.to_float(image)

  # Resize and crop if needed.
89
90
91
  resized_image = tf.image.resize_image_with_crop_or_pad(image,
                                                         output_width,
                                                         output_height)
92
  tf.image_summary('resized_image', tf.expand_dims(resized_image, 0))
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

  # Subtract off the mean and divide by the variance of the pixels.
  return tf.image.per_image_whitening(resized_image)


def preprocess_image(image, output_height, output_width, is_training=False):
  """Preprocesses the given image.

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    is_training: `True` if we're preprocessing the image for training and
      `False` otherwise.

  Returns:
    A preprocessed image.
  """
  if is_training:
    return preprocess_for_train(image, output_height, output_width)
  else:
    return preprocess_for_eval(image, output_height, output_width)