fine_tuning_bert.ipynb 53.8 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
6
        "colab_type": "text",
7
        "id": "vXLA5InzXydn"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
8
9
      },
      "source": [
10
11
12
13
14
        "##### Copyright 2019 The TensorFlow Authors."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
15
      "execution_count": null,
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
      "metadata": {
        "cellView": "form",
        "colab": {},
        "colab_type": "code",
        "id": "RuRlpLL-X0R_"
      },
      "outputs": [],
      "source": [
        "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
        "# you may not use this file except in compliance with the License.\n",
        "# You may obtain a copy of the License at\n",
        "#\n",
        "# https://www.apache.org/licenses/LICENSE-2.0\n",
        "#\n",
        "# Unless required by applicable law or agreed to in writing, software\n",
        "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
        "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
        "# See the License for the specific language governing permissions and\n",
        "# limitations under the License."
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
35
36
37
38
39
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
40
        "colab_type": "text",
41
        "id": "1mLJmVotXs64"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
42
43
      },
      "source": [
44
        "# Fine-tuning a BERT model"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
45
46
47
48
49
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
50
        "colab_type": "text",
51
        "id": "hYEwGTeCXnnX"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
52
53
      },
      "source": [
54
55
56
57
58
59
60
61
62
63
64
65
66
        "\u003ctable class=\"tfo-notebook-buttons\" align=\"left\"\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://www.tensorflow.org/official_models/tutorials/fine_tune_bert.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" /\u003eView on TensorFlow.org\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/models/blob/master/official/colab/fine_tuning_bert.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /\u003eRun in Google Colab\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/models/blob/master/official/colab/fine_tuning_bert.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/models/official/colab/fine_tuning_bert.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
67
68
69
        "  \u003ctd\u003e\n",
        "    \u003ca href=\"https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/hub_logo_32px.png\" /\u003eSee TF Hub model\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
70
        "\u003c/table\u003e"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
71
72
73
74
75
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
76
        "colab_type": "text",
77
        "id": "YN2ACivEPxgD"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
78
79
      },
      "source": [
80
81
82
        "In this example, we will work through fine-tuning a BERT model using the tensorflow-models PIP package.\n",
        "\n",
        "The pretrained BERT model this tutorial is based on is also available on [TensorFlow Hub](https://tensorflow.org/hub), to see how to use it refer to the [Hub Appendix](#hub_bert)"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
83
84
85
86
87
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
88
89
        "colab_type": "text",
        "id": "s2d9S2CSSO1z"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
90
91
      },
      "source": [
92
        "## Setup"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
93
94
95
96
97
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
98
99
        "colab_type": "text",
        "id": "fsACVQpVSifi"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
100
101
102
103
      },
      "source": [
        "### Install the TensorFlow Model Garden pip package\n",
        "\n",
104
105
        "*  `tf-models-official` is the stable Model Garden package. Note that it may not include the latest changes in the `tensorflow_models` github repo. To include latest changes, you may install `tf-models-nightly`,\n",
        "which is the nightly Model Garden package created daily automatically.\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
106
107
108
109
110
        "*  pip will install all models and dependencies automatically."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
111
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
112
      "metadata": {
Chen Chen's avatar
Chen Chen committed
113
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
        "colab_type": "code",
Chen Chen's avatar
Chen Chen committed
115
        "id": "NvNr2svBM-p3"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
116
      },
Chen Chen's avatar
Chen Chen committed
117
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
118
      "source": [
119
        "!pip install -q tf-models-official==2.3.0"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
120
121
122
123
124
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
125
126
        "colab_type": "text",
        "id": "U-7qPCjWUAyy"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
127
128
      },
      "source": [
129
        "### Imports"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
130
131
132
133
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
134
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
135
      "metadata": {
Chen Chen's avatar
Chen Chen committed
136
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
137
        "colab_type": "code",
Chen Chen's avatar
Chen Chen committed
138
        "id": "lXsXev5MNr20"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
139
      },
Chen Chen's avatar
Chen Chen committed
140
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
141
      "source": [
Chen Chen's avatar
Chen Chen committed
142
        "import os\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
143
        "\n",
Chen Chen's avatar
Chen Chen committed
144
        "import numpy as np\n",
145
146
        "import matplotlib.pyplot as plt\n",
        "\n",
Chen Chen's avatar
Chen Chen committed
147
148
        "import tensorflow as tf\n",
        "\n",
149
150
151
152
        "import tensorflow_hub as hub\n",
        "import tensorflow_datasets as tfds\n",
        "tfds.disable_progress_bar()\n",
        "\n",
Chen Chen's avatar
Chen Chen committed
153
        "from official.modeling import tf_utils\n",
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        "from official import nlp\n",
        "from official.nlp import bert\n",
        "\n",
        "# Load the required submodules\n",
        "import official.nlp.optimization\n",
        "import official.nlp.bert.bert_models\n",
        "import official.nlp.bert.configs\n",
        "import official.nlp.bert.run_classifier\n",
        "import official.nlp.bert.tokenization\n",
        "import official.nlp.data.classifier_data_lib\n",
        "import official.nlp.modeling.losses\n",
        "import official.nlp.modeling.models\n",
        "import official.nlp.modeling.networks"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "mbanlzTvJBsz"
      },
      "source": [
        "### Resources"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "PpW0x8TpR8DT"
      },
      "source": [
        "This directory contains the configuration, vocabulary, and a pre-trained checkpoint used in this tutorial:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
191
      "execution_count": null,
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "vzRHOLciR8eq"
      },
      "outputs": [],
      "source": [
        "gs_folder_bert = \"gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12\"\n",
        "tf.io.gfile.listdir(gs_folder_bert)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "9uFskufsR2LT"
      },
      "source": [
Mark Daoust's avatar
Mark Daoust committed
210
        "You can get a pre-trained BERT encoder from [TensorFlow Hub](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2):"
211
212
213
214
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
215
      "execution_count": null,
216
217
218
219
220
221
222
223
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "e0dAkUttJAzj"
      },
      "outputs": [],
      "source": [
        "hub_url_bert = \"https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2\""
Chen Chen's avatar
Chen Chen committed
224
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
225
226
227
228
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
229
        "colab_type": "text",
230
        "id": "Qv6abtRvH4xO"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
231
232
      },
      "source": [
233
234
235
236
        "## The data\n",
        "For this example we used the [GLUE MRPC dataset from TFDS](https://www.tensorflow.org/datasets/catalog/glue#gluemrpc).\n",
        "\n",
        "This dataset is not set up so that it can be directly fed into the BERT model, so this section also handles the necessary preprocessing."
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
237
238
239
240
241
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
242
        "colab_type": "text",
243
        "id": "28DvUhC1YUiB"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
244
245
      },
      "source": [
246
        "### Get the dataset from TensorFlow Datasets\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
247
        "\n",
Chen Chen's avatar
Chen Chen committed
248
        "The Microsoft Research Paraphrase Corpus (Dolan \u0026 Brockett, 2005) is a corpus of sentence pairs automatically extracted from online news sources, with human annotations for whether the sentences in the pair are semantically equivalent.\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
249
250
251
252
        "\n",
        "*   Number of labels: 2.\n",
        "*   Size of training dataset: 3668.\n",
        "*   Size of evaluation dataset: 408.\n",
253
254
255
256
257
        "*   Maximum sequence length of training and evaluation dataset: 128.\n"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
258
      "execution_count": null,
259
260
261
262
263
264
265
266
267
268
269
270
271
272
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "Ijikx5OsH9AT"
      },
      "outputs": [],
      "source": [
        "glue, info = tfds.load('glue/mrpc', with_info=True,\n",
        "                       # It's small, load the whole dataset\n",
        "                       batch_size=-1)"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
273
      "execution_count": null,
274
275
276
277
278
279
280
281
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "xf9zz4vLYXjr"
      },
      "outputs": [],
      "source": [
        "list(glue.keys())"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
282
283
284
285
286
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
287
        "colab_type": "text",
288
        "id": "ZgBg2r2nYT-K"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
289
290
      },
      "source": [
291
292
293
294
295
        "The `info` object describes the dataset and it's features:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
296
      "execution_count": null,
297
298
299
300
301
302
303
304
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "IQrHxv7W7jH5"
      },
      "outputs": [],
      "source": [
        "info.features"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
305
306
307
308
309
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
310
        "colab_type": "text",
311
        "id": "vhsVWYNxazz5"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
312
313
      },
      "source": [
314
        "The two classes are:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
315
316
317
318
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
319
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
320
      "metadata": {
Chen Chen's avatar
Chen Chen committed
321
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
322
        "colab_type": "code",
323
        "id": "n0gfc_VTayfQ"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
324
      },
Chen Chen's avatar
Chen Chen committed
325
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
326
      "source": [
327
        "info.features['label'].names"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
328
329
330
331
332
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
333
        "colab_type": "text",
334
        "id": "38zJcap6xkbC"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
335
336
      },
      "source": [
337
        "Here is one example from the training set:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
338
339
340
341
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
342
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
343
      "metadata": {
Chen Chen's avatar
Chen Chen committed
344
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
345
        "colab_type": "code",
346
        "id": "xON_i6SkwApW"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
347
      },
Chen Chen's avatar
Chen Chen committed
348
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
349
      "source": [
350
        "glue_train = glue['train']\n",
Chen Chen's avatar
Chen Chen committed
351
        "\n",
352
353
        "for key, value in glue_train.items():\n",
        "  print(f\"{key:9s}: {value[0].numpy()}\")"
Chen Chen's avatar
Chen Chen committed
354
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
355
356
357
358
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
359
        "colab_type": "text",
360
        "id": "9fbTyfJpNr7x"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
361
362
      },
      "source": [
363
        "### The BERT tokenizer"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
364
365
366
367
368
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
369
        "colab_type": "text",
370
        "id": "wqeN54S61ZKQ"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
371
372
      },
      "source": [
373
        "To fine tune a pre-trained model you need to be sure that you're using exactly the same tokenization, vocabulary, and index mapping as you used during training.\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
374
        "\n",
375
376
377
        "The BERT tokenizer used in this tutorial is written in pure Python (It's not built out of TensorFlow ops). So you can't just plug it into your model as a `keras.layer` like you can with `preprocessing.TextVectorization`.\n",
        "\n",
        "The following code rebuilds the tokenizer that was used by the base model:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
378
379
380
381
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
382
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
383
      "metadata": {
Chen Chen's avatar
Chen Chen committed
384
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
385
        "colab_type": "code",
386
        "id": "idxyhmrCQcw5"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
387
      },
Chen Chen's avatar
Chen Chen committed
388
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
389
      "source": [
390
391
392
393
394
395
        "# Set up tokenizer to generate Tensorflow dataset\n",
        "tokenizer = bert.tokenization.FullTokenizer(\n",
        "    vocab_file=os.path.join(gs_folder_bert, \"vocab.txt\"),\n",
        "     do_lower_case=True)\n",
        "\n",
        "print(\"Vocab size:\", len(tokenizer.vocab))"
Chen Chen's avatar
Chen Chen committed
396
397
398
399
400
401
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
402
        "id": "zYHDSquU2lDU"
Chen Chen's avatar
Chen Chen committed
403
404
      },
      "source": [
405
        "Tokenize a sentence:"
Chen Chen's avatar
Chen Chen committed
406
407
408
409
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
410
      "execution_count": null,
Chen Chen's avatar
Chen Chen committed
411
412
413
      "metadata": {
        "colab": {},
        "colab_type": "code",
414
        "id": "L_OfOYPg853R"
Chen Chen's avatar
Chen Chen committed
415
416
417
      },
      "outputs": [],
      "source": [
418
419
420
421
        "tokens = tokenizer.tokenize(\"Hello TensorFlow!\")\n",
        "print(tokens)\n",
        "ids = tokenizer.convert_tokens_to_ids(tokens)\n",
        "print(ids)"
Chen Chen's avatar
Chen Chen committed
422
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
423
424
425
426
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
427
        "colab_type": "text",
428
        "id": "kkAXLtuyWWDI"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
429
430
      },
      "source": [
431
        "### Preprocess the data\n",
Chen Chen's avatar
Chen Chen committed
432
        "\n",
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
        "The section manually preprocessed the dataset into the format expected by the model.\n",
        "\n",
        "This dataset is small, so preprocessing can be done quickly and easily in memory. For larger datasets the `tf_models` library includes some tools for preprocessing and re-serializing a dataset. See [Appendix: Re-encoding a large dataset](#re_encoding_tools) for details."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "62UTWLQd9-LB"
      },
      "source": [
        "#### Encode the sentences\n",
        "\n",
        "The model expects its two inputs sentences to be concatenated together. This input is expected to start with a `[CLS]` \"This is a classification problem\" token, and each sentence should end with a `[SEP]` \"Separator\" token:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
448
449
450
451
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
452
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
453
      "metadata": {
Chen Chen's avatar
Chen Chen committed
454
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
455
        "colab_type": "code",
456
        "id": "bdL-dRNRBRJT"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
457
      },
Chen Chen's avatar
Chen Chen committed
458
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
459
      "source": [
460
        "tokenizer.convert_tokens_to_ids(['[CLS]', '[SEP]'])"
Chen Chen's avatar
Chen Chen committed
461
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
462
463
464
465
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
466
        "colab_type": "text",
467
        "id": "UrPktnqpwqie"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
468
469
      },
      "source": [
470
        "Start by encoding all the sentences while appending a `[SEP]` token, and packing them into ragged-tensors:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
471
472
473
474
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
475
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
476
      "metadata": {
Chen Chen's avatar
Chen Chen committed
477
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
478
        "colab_type": "code",
479
        "id": "BR7BmtU498Bh"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
480
      },
Chen Chen's avatar
Chen Chen committed
481
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
482
      "source": [
483
484
485
486
        "def encode_sentence(s):\n",
        "   tokens = list(tokenizer.tokenize(s.numpy()))\n",
        "   tokens.append('[SEP]')\n",
        "   return tokenizer.convert_tokens_to_ids(tokens)\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
487
        "\n",
488
489
490
491
492
493
494
495
        "sentence1 = tf.ragged.constant([\n",
        "    encode_sentence(s) for s in glue_train[\"sentence1\"]])\n",
        "sentence2 = tf.ragged.constant([\n",
        "    encode_sentence(s) for s in glue_train[\"sentence2\"]])"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
496
      "execution_count": null,
497
498
499
500
501
502
503
504
505
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "has42aUdfky-"
      },
      "outputs": [],
      "source": [
        "print(\"Sentence1 shape:\", sentence1.shape.as_list())\n",
        "print(\"Sentence2 shape:\", sentence2.shape.as_list())"
Chen Chen's avatar
Chen Chen committed
506
507
508
509
510
511
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
512
        "id": "MU9lTWy_xXbb"
Chen Chen's avatar
Chen Chen committed
513
514
      },
      "source": [
515
        "Now prepend a `[CLS]` token, and concatenate the ragged tensors to form a single `input_word_ids` tensor for each example. `RaggedTensor.to_tensor()` zero pads to the longest sequence."
Chen Chen's avatar
Chen Chen committed
516
517
518
519
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
520
      "execution_count": null,
Chen Chen's avatar
Chen Chen committed
521
522
523
      "metadata": {
        "colab": {},
        "colab_type": "code",
524
        "id": "USD8uihw-g4J"
Chen Chen's avatar
Chen Chen committed
525
526
527
      },
      "outputs": [],
      "source": [
528
529
530
        "cls = [tokenizer.convert_tokens_to_ids(['[CLS]'])]*sentence1.shape[0]\n",
        "input_word_ids = tf.concat([cls, sentence1, sentence2], axis=-1)\n",
        "_ = plt.pcolormesh(input_word_ids.to_tensor())"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
531
532
533
534
535
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
536
        "colab_type": "text",
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
        "id": "xmNv4l4k-dBZ"
      },
      "source": [
        "#### Mask and input type"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "DIWjNIKq-ldh"
      },
      "source": [
        "The model expects two additional inputs:\n",
        "\n",
        "* The input mask\n",
        "* The input type"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "ulNZ4U96-8JZ"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
561
562
      },
      "source": [
563
        "The mask allows the model to cleanly differentiate between the content and the padding. The mask has the same shape as the `input_word_ids`, and contains a `1` anywhere the `input_word_ids` is not padding."
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
564
565
566
567
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
568
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
569
      "metadata": {
Chen Chen's avatar
Chen Chen committed
570
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
571
        "colab_type": "code",
572
        "id": "EezOO9qj91kP"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
573
      },
Chen Chen's avatar
Chen Chen committed
574
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
575
      "source": [
576
577
578
        "input_mask = tf.ones_like(input_word_ids).to_tensor()\n",
        "\n",
        "plt.pcolormesh(input_mask)"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
579
580
581
582
583
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
584
        "colab_type": "text",
585
        "id": "rxLenwAvCkBf"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
586
587
      },
      "source": [
588
        "The \"input type\" also has the same shape, but inside the non-padded region, contains a `0` or a `1` indicating which sentence the token is a part of. "
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
589
590
591
592
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
593
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
594
      "metadata": {
Chen Chen's avatar
Chen Chen committed
595
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
596
        "colab_type": "code",
597
        "id": "2CetH_5C9P2m"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
598
      },
Chen Chen's avatar
Chen Chen committed
599
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
600
      "source": [
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
        "type_cls = tf.zeros_like(cls)\n",
        "type_s1 = tf.zeros_like(sentence1)\n",
        "type_s2 = tf.ones_like(sentence2)\n",
        "input_type_ids = tf.concat([type_cls, type_s1, type_s2], axis=-1).to_tensor()\n",
        "\n",
        "plt.pcolormesh(input_type_ids)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "P5UBnCn8Ii6s"
      },
      "source": [
        "#### Put it all together\n",
        "\n",
        "Collect the above text parsing code into a single function, and apply it to each split of the `glue/mrpc` dataset."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
623
      "execution_count": null,
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "sDGiWYPLEd5a"
      },
      "outputs": [],
      "source": [
        "def encode_sentence(s, tokenizer):\n",
        "   tokens = list(tokenizer.tokenize(s))\n",
        "   tokens.append('[SEP]')\n",
        "   return tokenizer.convert_tokens_to_ids(tokens)\n",
        "\n",
        "def bert_encode(glue_dict, tokenizer):\n",
        "  num_examples = len(glue_dict[\"sentence1\"])\n",
        "  \n",
        "  sentence1 = tf.ragged.constant([\n",
        "      encode_sentence(s, tokenizer)\n",
        "      for s in np.array(glue_dict[\"sentence1\"])])\n",
        "  sentence2 = tf.ragged.constant([\n",
        "      encode_sentence(s, tokenizer)\n",
        "       for s in np.array(glue_dict[\"sentence2\"])])\n",
        "\n",
        "  cls = [tokenizer.convert_tokens_to_ids(['[CLS]'])]*sentence1.shape[0]\n",
        "  input_word_ids = tf.concat([cls, sentence1, sentence2], axis=-1)\n",
        "\n",
        "  input_mask = tf.ones_like(input_word_ids).to_tensor()\n",
        "\n",
        "  type_cls = tf.zeros_like(cls)\n",
        "  type_s1 = tf.zeros_like(sentence1)\n",
        "  type_s2 = tf.ones_like(sentence2)\n",
        "  input_type_ids = tf.concat(\n",
        "      [type_cls, type_s1, type_s2], axis=-1).to_tensor()\n",
        "\n",
        "  inputs = {\n",
        "      'input_word_ids': input_word_ids.to_tensor(),\n",
        "      'input_mask': input_mask,\n",
        "      'input_type_ids': input_type_ids}\n",
        "\n",
        "  return inputs"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
667
      "execution_count": null,
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "yuLKxf6zHxw-"
      },
      "outputs": [],
      "source": [
        "glue_train = bert_encode(glue['train'], tokenizer)\n",
        "glue_train_labels = glue['train']['label']\n",
        "\n",
        "glue_validation = bert_encode(glue['validation'], tokenizer)\n",
        "glue_validation_labels = glue['validation']['label']\n",
        "\n",
        "glue_test = bert_encode(glue['test'], tokenizer)\n",
        "glue_test_labels  = glue['test']['label']"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "7FC5aLVxKVKK"
      },
      "source": [
        "Each subset of the data has been converted to a dictionary of features, and a set of labels. Each feature in the input dictionary has the same shape, and the number of labels should match:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
697
      "execution_count": null,
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "jyjTdGpFhO_1"
      },
      "outputs": [],
      "source": [
        "for key, value in glue_train.items():\n",
        "  print(f'{key:15s} shape: {value.shape}')\n",
        "\n",
        "print(f'glue_train_labels shape: {glue_train_labels.shape}')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "FSwymsbkbLDA"
      },
      "source": [
        "## The model"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Efrj3Cn1kLAp"
      },
      "source": [
        "### Build the model\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "xxpOY5r2Ayq6"
      },
      "source": [
        "The first step is to download the configuration  for the pre-trained model.\n"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
743
      "execution_count": null,
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "ujapVfZ_AKW7"
      },
      "outputs": [],
      "source": [
        "import json\n",
        "\n",
        "bert_config_file = os.path.join(gs_folder_bert, \"bert_config.json\")\n",
        "config_dict = json.loads(tf.io.gfile.GFile(bert_config_file).read())\n",
        "\n",
        "bert_config = bert.configs.BertConfig.from_dict(config_dict)\n",
        "\n",
        "config_dict"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "96ldxDSwkVkj"
      },
      "source": [
        "The `config` defines the core BERT Model, which is a Keras model to predict the outputs of `num_classes` from the inputs with maximum sequence length `max_seq_length`.\n",
        "\n",
        "This function returns both the encoder and the classifier."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
775
      "execution_count": null,
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "cH682__U0FBv"
      },
      "outputs": [],
      "source": [
        "bert_classifier, bert_encoder = bert.bert_models.classifier_model(\n",
        "    bert_config, num_labels=2)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "XqKp3-5GIZlw"
      },
      "source": [
        "The classifier has three inputs and one output:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
799
      "execution_count": null,
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "bAQblMIjwkvx"
      },
      "outputs": [],
      "source": [
        "tf.keras.utils.plot_model(bert_classifier, show_shapes=True, dpi=48)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "sFmVG4SKZAw8"
      },
      "source": [
        "Run it on a test batch of data 10 examples from the training set. The output is the logits for the two classes:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
822
      "execution_count": null,
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "VTjgPbp4ZDKo"
      },
      "outputs": [],
      "source": [
        "glue_batch = {key: val[:10] for key, val in glue_train.items()}\n",
        "\n",
        "bert_classifier(\n",
        "    glue_batch, training=True\n",
        ").numpy()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Q0NTdwZsQK8n"
      },
      "source": [
        "The `TransformerEncoder` in the center of the classifier above **is** the `bert_encoder`.\n",
        "\n",
        "Inspecting the encoder, we see its stack of `Transformer` layers connected to those same three inputs:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
851
      "execution_count": null,
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "8L__-erBwLIQ"
      },
      "outputs": [],
      "source": [
        "tf.keras.utils.plot_model(bert_encoder, show_shapes=True, dpi=48)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "mKAvkQc3heSy"
      },
      "source": [
        "### Restore the encoder weights\n",
        "\n",
        "When built the encoder is randomly initialized. Restore the encoder's weights from the checkpoint:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
876
      "execution_count": null,
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "97Ll2Gichd_Y"
      },
      "outputs": [],
      "source": [
        "checkpoint = tf.train.Checkpoint(model=bert_encoder)\n",
        "checkpoint.restore(\n",
        "    os.path.join(gs_folder_bert, 'bert_model.ckpt')).assert_consumed()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "2oHOql35k3Dd"
      },
      "source": [
        "Note: The pretrained `TransformerEncoder` is also available on [TensorFlow Hub](https://tensorflow.org/hub). See the [Hub appendix](#hub_bert) for details. "
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "115caFLMk-_l"
      },
      "source": [
        "### Set up the optimizer\n",
        "\n",
        "BERT adopts the Adam optimizer with weight decay (aka \"[AdamW](https://arxiv.org/abs/1711.05101)\").\n",
        "It also employs a learning rate schedule that firstly warms up from 0 and then decays to 0."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
914
      "execution_count": null,
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "w8qXKRZuCwW4"
      },
      "outputs": [],
      "source": [
        "# Set up epochs and steps\n",
        "epochs = 3\n",
        "batch_size = 32\n",
        "eval_batch_size = 32\n",
        "\n",
        "train_data_size = len(glue_train_labels)\n",
        "steps_per_epoch = int(train_data_size / batch_size)\n",
        "num_train_steps = steps_per_epoch * epochs\n",
        "warmup_steps = int(epochs * train_data_size * 0.1 / batch_size)\n",
        "\n",
        "# creates an optimizer with learning rate schedule\n",
        "optimizer = nlp.optimization.create_optimizer(\n",
        "    2e-5, num_train_steps=num_train_steps, num_warmup_steps=warmup_steps)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "pXRGxiRNEHS2"
      },
      "source": [
        "This returns an `AdamWeightDecay`  optimizer with the learning rate schedule set:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
949
      "execution_count": null,
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "eQNA16bhDpky"
      },
      "outputs": [],
      "source": [
        "type(optimizer)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "xqu_K71fJQB8"
      },
      "source": [
        "To see an example of how to customize the optimizer and it's schedule, see the [Optimizer schedule appendix](#optiizer_schedule)."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "78FEUOOEkoP0"
      },
      "source": [
        "### Train the model"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "OTNcA0O0nSq9"
      },
      "source": [
        "The metric is accuracy and we use sparse categorical cross-entropy as loss."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
992
      "execution_count": null,
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "nzi8hjeTQTRs"
      },
      "outputs": [],
      "source": [
        "metrics = [tf.keras.metrics.SparseCategoricalAccuracy('accuracy', dtype=tf.float32)]\n",
        "loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)\n",
        "\n",
        "bert_classifier.compile(\n",
        "    optimizer=optimizer,\n",
        "    loss=loss,\n",
        "    metrics=metrics)\n",
        "\n",
        "bert_classifier.fit(\n",
        "      glue_train, glue_train_labels,\n",
        "      validation_data=(glue_validation, glue_validation_labels),\n",
        "      batch_size=32,\n",
        "      epochs=epochs)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "IFtKFWbNKb0u"
      },
      "source": [
        "Now run the fine-tuned model on a custom example to see that it works.\n",
        "\n",
        "Start by encoding some sentence pairs:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1029
      "execution_count": null,
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "9ZoUgDUNJPz3"
      },
      "outputs": [],
      "source": [
        "my_examples = bert_encode(\n",
        "    glue_dict = {\n",
        "        'sentence1':[\n",
        "            'The rain in Spain falls mainly on the plain.',\n",
        "            'Look I fine tuned BERT.'],\n",
        "        'sentence2':[\n",
        "            'It mostly rains on the flat lands of Spain.',\n",
        "            'Is it working? This does not match.']\n",
        "    },\n",
        "    tokenizer=tokenizer)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "7ynJibkBRTJF"
      },
      "source": [
        "The model should report class `1` \"match\" for the first example and class `0` \"no-match\" for the second:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1061
      "execution_count": null,
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "umo0ttrgRYIM"
      },
      "outputs": [],
      "source": [
        "result = bert_classifier(my_examples, training=False)\n",
        "\n",
        "result = tf.argmax(result).numpy()\n",
        "result"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1077
      "execution_count": null,
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "utGl0M3aZCE4"
      },
      "outputs": [],
      "source": [
        "np.array(info.features['label'].names)[result]"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "fVo_AnT0l26j"
      },
      "source": [
        "### Save the model\n",
        "\n",
        "Often the goal of training a model is to _use_ it for something, so export the model and then restore it to be sure that it works."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1102
      "execution_count": null,
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "Nl5x6nElZqkP"
      },
      "outputs": [],
      "source": [
        "export_dir='./saved_model'\n",
        "tf.saved_model.save(bert_classifier, export_dir=export_dir)"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1116
      "execution_count": null,
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "y_ACvKPsVUXC"
      },
      "outputs": [],
      "source": [
        "reloaded = tf.saved_model.load(export_dir)\n",
        "reloaded_result = reloaded([my_examples['input_word_ids'],\n",
        "                            my_examples['input_mask'],\n",
        "                            my_examples['input_type_ids']], training=False)\n",
        "\n",
        "original_result = bert_classifier(my_examples, training=False)\n",
        "\n",
        "# The results are (nearly) identical:\n",
        "print(original_result.numpy())\n",
        "print()\n",
        "print(reloaded_result.numpy())"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "eQceYqRFT_Eg"
      },
      "source": [
        "## Appendix"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "SaC1RlFawUpc"
      },
      "source": [
        "\u003ca id=re_encoding_tools\u003e\u003c/a\u003e\n",
        "### Re-encoding a large dataset"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "CwUdjFBkzUgh"
      },
      "source": [
        "This tutorial you re-encoded the dataset in memory, for clarity.\n",
        "\n",
        "This was only possible because `glue/mrpc` is a very small dataset. To deal with larger datasets `tf_models` library includes some tools for processing and re-encoding a dataset for efficient training."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "2UTQrkyOT5wD"
      },
      "source": [
        "The first step is to describe which features of the dataset should be transformed:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1182
      "execution_count": null,
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "XQeDFOzYR9Z9"
      },
      "outputs": [],
      "source": [
        "processor = nlp.data.classifier_data_lib.TfdsProcessor(\n",
        "    tfds_params=\"dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2\",\n",
        "    process_text_fn=bert.tokenization.convert_to_unicode)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "XrFQbfErUWxa"
      },
      "source": [
        "Then apply the transformation to generate new TFRecord files."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1207
      "execution_count": null,
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "ymw7GOHpSHKU"
      },
      "outputs": [],
      "source": [
        "# Set up output of training and evaluation Tensorflow dataset\n",
        "train_data_output_path=\"./mrpc_train.tf_record\"\n",
        "eval_data_output_path=\"./mrpc_eval.tf_record\"\n",
        "\n",
        "max_seq_length = 128\n",
        "batch_size = 32\n",
        "eval_batch_size = 32\n",
        "\n",
        "# Generate and save training data into a tf record file\n",
        "input_meta_data = (\n",
        "    nlp.data.classifier_data_lib.generate_tf_record_from_data_file(\n",
        "      processor=processor,\n",
        "      data_dir=None,  # It is `None` because data is from tfds, not local dir.\n",
        "      tokenizer=tokenizer,\n",
        "      train_data_output_path=train_data_output_path,\n",
        "      eval_data_output_path=eval_data_output_path,\n",
        "      max_seq_length=max_seq_length))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "uX_Sp-wTUoRm"
      },
      "source": [
        "Finally create `tf.data` input pipelines from those TFRecord files:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1246
      "execution_count": null,
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "rkHxIK57SQ_r"
      },
      "outputs": [],
      "source": [
        "training_dataset = bert.run_classifier.get_dataset_fn(\n",
        "    train_data_output_path,\n",
        "    max_seq_length,\n",
        "    batch_size,\n",
        "    is_training=True)()\n",
        "\n",
        "evaluation_dataset = bert.run_classifier.get_dataset_fn(\n",
        "    eval_data_output_path,\n",
        "    max_seq_length,\n",
        "    eval_batch_size,\n",
        "    is_training=False)()\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "stbaVouogvzS"
      },
      "source": [
        "The resulting `tf.data.Datasets` return `(features, labels)` pairs, as expected by `keras.Model.fit`:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1279
      "execution_count": null,
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "gwhrlQl4gxVF"
      },
      "outputs": [],
      "source": [
        "training_dataset.element_spec"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "dbJ76vSJj77j"
      },
      "source": [
        "#### Create tf.data.Dataset for training and evaluation\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "9J95LFRohiYw"
      },
      "source": [
        "If you need to modify the data loading here is some code to get you started:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1312
      "execution_count": null,
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "gCvaLLAxPuMc"
      },
      "outputs": [],
      "source": [
        "def create_classifier_dataset(file_path, seq_length, batch_size, is_training):\n",
        "  \"\"\"Creates input dataset from (tf)records files for train/eval.\"\"\"\n",
        "  dataset = tf.data.TFRecordDataset(file_path)\n",
        "  if is_training:\n",
        "    dataset = dataset.shuffle(100)\n",
        "    dataset = dataset.repeat()\n",
        "\n",
        "  def decode_record(record):\n",
        "    name_to_features = {\n",
        "      'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),\n",
        "      'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),\n",
        "      'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),\n",
        "      'label_ids': tf.io.FixedLenFeature([], tf.int64),\n",
        "    }\n",
        "    return tf.io.parse_single_example(record, name_to_features)\n",
        "\n",
        "  def _select_data_from_record(record):\n",
        "    x = {\n",
        "        'input_word_ids': record['input_ids'],\n",
        "        'input_mask': record['input_mask'],\n",
        "        'input_type_ids': record['segment_ids']\n",
        "    }\n",
        "    y = record['label_ids']\n",
        "    return (x, y)\n",
        "\n",
        "  dataset = dataset.map(decode_record,\n",
        "                        num_parallel_calls=tf.data.experimental.AUTOTUNE)\n",
        "  dataset = dataset.map(\n",
        "      _select_data_from_record,\n",
        "      num_parallel_calls=tf.data.experimental.AUTOTUNE)\n",
        "  dataset = dataset.batch(batch_size, drop_remainder=is_training)\n",
        "  dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)\n",
        "  return dataset"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1357
      "execution_count": null,
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "rutkBadrhzdR"
      },
      "outputs": [],
      "source": [
        "# Set up batch sizes\n",
        "batch_size = 32\n",
        "eval_batch_size = 32\n",
        "\n",
        "# Return Tensorflow dataset\n",
        "training_dataset = create_classifier_dataset(\n",
        "    train_data_output_path,\n",
        "    input_meta_data['max_seq_length'],\n",
        "    batch_size,\n",
        "    is_training=True)\n",
        "\n",
        "evaluation_dataset = create_classifier_dataset(\n",
        "    eval_data_output_path,\n",
        "    input_meta_data['max_seq_length'],\n",
        "    eval_batch_size,\n",
        "    is_training=False)"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1385
      "execution_count": null,
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "59TVgt4Z7fuU"
      },
      "outputs": [],
      "source": [
        "training_dataset.element_spec"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "QbklKt-w_CiI"
      },
      "source": [
        "\u003ca id=\"hub_bert\"\u003e\u003c/a\u003e\n",
        "\n",
        "### TFModels BERT on TFHub\n",
        "\n",
        "You can get [the BERT model](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2) off the shelf from [TFHub](https://tensorflow.org/hub). It would not be hard to add a classification head on top of this `hub.KerasLayer`"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1412
      "execution_count": null,
1413
1414
1415
      "metadata": {
        "colab": {},
        "colab_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1416
        "id": "GDWrHm0BGpbX"
1417
1418
1419
1420
      },
      "outputs": [],
      "source": [
        "# Note: 350MB download.\n",
Mark Daoust's avatar
Mark Daoust committed
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
        "import tensorflow_hub as hub"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "colab": {},
        "colab_type": "code",
        "id": "Y29meH0qGq_5"
      },
      "outputs": [],
      "source": [
        "hub_model_name = \"bert_en_uncased_L-12_H-768_A-12\" #@param [\"bert_en_uncased_L-24_H-1024_A-16\", \"bert_en_wwm_cased_L-24_H-1024_A-16\", \"bert_en_uncased_L-12_H-768_A-12\", \"bert_en_wwm_uncased_L-24_H-1024_A-16\", \"bert_en_cased_L-24_H-1024_A-16\", \"bert_en_cased_L-12_H-768_A-12\", \"bert_zh_L-12_H-768_A-12\", \"bert_multi_cased_L-12_H-768_A-12\"]"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "lo6479At4sP1"
      },
      "outputs": [],
      "source": [
1448
        "hub_encoder = hub.KerasLayer(f\"https://tfhub.dev/tensorflow/{hub_model_name}/2\",\n",
Mark Daoust's avatar
Mark Daoust committed
1449
        "                             trainable=True)\n",
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
        "\n",
        "print(f\"The Hub encoder has {len(hub_encoder.trainable_variables)} trainable variables\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "iTzF574wivQv"
      },
      "source": [
        "Test run it on a batch of data:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1466
      "execution_count": null,
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "XEcYrCR45Uwo"
      },
      "outputs": [],
      "source": [
        "result = hub_encoder(\n",
        "    inputs=[glue_train['input_word_ids'][:10],\n",
        "            glue_train['input_mask'][:10],\n",
        "            glue_train['input_type_ids'][:10],],\n",
        "    training=False,\n",
        ")\n",
        "\n",
        "print(\"Pooled output shape:\", result[0].shape)\n",
        "print(\"Sequence output shape:\", result[1].shape)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "cjojn8SmLSRI"
      },
      "source": [
        "At this point it would be simple to add a classification head yourself.\n",
        "\n",
        "The `bert_models.classifier_model` function can also build a classifier onto the encoder from TensorFlow Hub:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1499
      "execution_count": null,
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "9nTDaApyLR70"
      },
      "outputs": [],
      "source": [
        "hub_classifier, hub_encoder = bert.bert_models.classifier_model(\n",
        "    # Caution: Most of `bert_config` is ignored if you pass a hub url.\n",
        "    bert_config=bert_config, hub_module_url=hub_url_bert, num_labels=2)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "xMJX3wV0_v7I"
      },
      "source": [
        "The one downside to loading this model from TFHub is that the structure of internal keras layers is not restored. So it's more difficult to inspect or modify the model. The `TransformerEncoder` model is now a single layer:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1524
      "execution_count": null,
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "pD71dnvhM2QS"
      },
      "outputs": [],
      "source": [
        "tf.keras.utils.plot_model(hub_classifier, show_shapes=True, dpi=64)"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1537
      "execution_count": null,
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "nLZD-isBzNKi"
      },
      "outputs": [],
      "source": [
        "try:\n",
        "  tf.keras.utils.plot_model(hub_encoder, show_shapes=True, dpi=64)\n",
        "  assert False\n",
        "except Exception as e:\n",
        "  print(f\"{type(e).__name__}: {e}\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "ZxSqH0dNAgXV"
      },
      "source": [
        "\u003ca id=\"model_builder_functions\"\u003e\u003c/a\u003e\n",
        "\n",
        "### Low level model building\n",
        "\n",
        "If you need a more control over the construction of the model it's worth noting that the `classifier_model` function used earlier is really just a thin wrapper over the `nlp.modeling.networks.TransformerEncoder` and `nlp.modeling.models.BertClassifier` classes. Just remember that if you start modifying the architecture it may not be correct or possible to reload the pre-trained checkpoint so you'll need to retrain from scratch."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "0cgABEwDj06P"
      },
      "source": [
        "Build the encoder:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1578
      "execution_count": null,
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "5r_yqhBFSVEM"
      },
      "outputs": [],
      "source": [
        "transformer_config = config_dict.copy()\n",
        "\n",
        "# You need to rename a few fields to make this work:\n",
        "transformer_config['attention_dropout_rate'] = transformer_config.pop('attention_probs_dropout_prob')\n",
        "transformer_config['activation'] = tf_utils.get_activation(transformer_config.pop('hidden_act'))\n",
        "transformer_config['dropout_rate'] = transformer_config.pop('hidden_dropout_prob')\n",
        "transformer_config['initializer'] = tf.keras.initializers.TruncatedNormal(\n",
        "          stddev=transformer_config.pop('initializer_range'))\n",
        "transformer_config['max_sequence_length'] = transformer_config.pop('max_position_embeddings')\n",
        "transformer_config['num_layers'] = transformer_config.pop('num_hidden_layers')\n",
        "\n",
        "transformer_config"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1602
      "execution_count": null,
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "rIO8MI7LLijh"
      },
      "outputs": [],
      "source": [
        "manual_encoder = nlp.modeling.networks.TransformerEncoder(**transformer_config)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "4a4tFSg9krRi"
      },
      "source": [
        "Restore the weights:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1625
      "execution_count": null,
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "X6N9NEqfXJCx"
      },
      "outputs": [],
      "source": [
        "checkpoint = tf.train.Checkpoint(model=manual_encoder)\n",
        "checkpoint.restore(\n",
        "    os.path.join(gs_folder_bert, 'bert_model.ckpt')).assert_consumed()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "1BPiPO4ykuwM"
      },
      "source": [
        "Test run it:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1650
      "execution_count": null,
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "hlVdgJKmj389"
      },
      "outputs": [],
      "source": [
        "result = manual_encoder(my_examples, training=True)\n",
        "\n",
        "print(\"Sequence output shape:\", result[0].shape)\n",
        "print(\"Pooled output shape:\", result[1].shape)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "nJMXvVgJkyBv"
      },
      "source": [
        "Wrap it in a classifier:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1676
      "execution_count": null,
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "tQX57GJ6wkAb"
      },
      "outputs": [],
      "source": [
        "manual_classifier = nlp.modeling.models.BertClassifier(\n",
        "        bert_encoder,\n",
        "        num_classes=2,\n",
        "        dropout_rate=transformer_config['dropout_rate'],\n",
        "        initializer=tf.keras.initializers.TruncatedNormal(\n",
        "          stddev=bert_config.initializer_range))"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1694
      "execution_count": null,
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "kB-nBWhQk0dS"
      },
      "outputs": [],
      "source": [
        "manual_classifier(my_examples, training=True).numpy()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "E6AJlOSyIO1L"
      },
      "source": [
        "\u003ca id=\"optiizer_schedule\"\u003e\u003c/a\u003e\n",
        "\n",
        "### Optimizers and schedules\n",
        "\n",
        "The optimizer used to train the model was created using the `nlp.optimization.create_optimizer` function:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1721
      "execution_count": null,
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "28Dv3BPRlFTD"
      },
      "outputs": [],
      "source": [
        "optimizer = nlp.optimization.create_optimizer(\n",
        "    2e-5, num_train_steps=num_train_steps, num_warmup_steps=warmup_steps)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "LRjcHr0UlT8c"
      },
      "source": [
        "That high level wrapper sets up the learning rate schedules and the optimizer.\n",
        "\n",
        "The base learning rate schedule used here is a linear decay to zero over the training run:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1747
      "execution_count": null,
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "MHY8K6kDngQn"
      },
      "outputs": [],
      "source": [
        "epochs = 3\n",
        "batch_size = 32\n",
        "eval_batch_size = 32\n",
        "\n",
        "train_data_size = len(glue_train_labels)\n",
        "steps_per_epoch = int(train_data_size / batch_size)\n",
        "num_train_steps = steps_per_epoch * epochs"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1766
      "execution_count": null,
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "wKIcSprulu3P"
      },
      "outputs": [],
      "source": [
        "decay_schedule = tf.keras.optimizers.schedules.PolynomialDecay(\n",
        "      initial_learning_rate=2e-5,\n",
        "      decay_steps=num_train_steps,\n",
        "      end_learning_rate=0)\n",
        "\n",
        "plt.plot([decay_schedule(n) for n in range(num_train_steps)])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "IMTC_gfAl_PZ"
      },
      "source": [
        "This, in turn is wrapped in a `WarmUp` schedule that linearly increases the learning rate to the target value over the first 10% of training:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1794
      "execution_count": null,
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "YRt3VTmBmCBY"
      },
      "outputs": [],
      "source": [
        "warmup_steps = num_train_steps * 0.1\n",
        "\n",
        "warmup_schedule = nlp.optimization.WarmUp(\n",
        "        initial_learning_rate=2e-5,\n",
        "        decay_schedule_fn=decay_schedule,\n",
        "        warmup_steps=warmup_steps)\n",
        "\n",
        "# The warmup overshoots, because it warms up to the `initial_learning_rate`\n",
        "# following the original implementation. You can set\n",
        "# `initial_learning_rate=decay_schedule(warmup_steps)` if you don't like the\n",
        "# overshoot.\n",
        "plt.plot([warmup_schedule(n) for n in range(num_train_steps)])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "l8D9Lv3Bn740"
      },
      "source": [
        "Then create the `nlp.optimization.AdamWeightDecay` using that schedule, configured for the BERT model:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1828
      "execution_count": null,
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "2Hf2rpRXk89N"
      },
      "outputs": [],
      "source": [
        "optimizer = nlp.optimization.AdamWeightDecay(\n",
        "        learning_rate=warmup_schedule,\n",
        "        weight_decay_rate=0.01,\n",
        "        epsilon=1e-6,\n",
        "        exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'])"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1841
1842
      ]
    }
Chen Chen's avatar
Chen Chen committed
1843
1844
1845
1846
1847
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "collapsed_sections": [],
1848
1849
1850
1851
      "name": "fine_tuning_bert.ipynb",
      "private_outputs": true,
      "provenance": [],
      "toc_visible": true
Chen Chen's avatar
Chen Chen committed
1852
1853
1854
1855
1856
1857
1858
1859
1860
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}