train.py 3.46 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
r"""Training driver.

To train:

Dan Kondratyuk's avatar
Dan Kondratyuk committed
20
21
CONFIG_FILE=official/projects/movinet/configs/yaml/movinet_a0_k600_8x8.yaml
python3 official/projects/movinet/train.py \
Dan Kondratyuk's avatar
Dan Kondratyuk committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    --experiment=movinet_kinetics600 \
    --mode=train \
    --model_dir=/tmp/movinet/ \
    --config_file=${CONFIG_FILE} \
    --params_override="" \
    --gin_file="" \
    --gin_params="" \
    --tpu="" \
    --tf_data_service=""
"""

from absl import app
from absl import flags
import gin

# pylint: disable=unused-import
from official.common import registry_imports
# pylint: enable=unused-import
from official.common import distribute_utils
from official.common import flags as tfm_flags
from official.core import task_factory
from official.core import train_lib
from official.core import train_utils
from official.modeling import performance
# Import movinet libraries to register the backbone and model into tf.vision
# model garden factory.
# pylint: disable=unused-import
Liangzhe Yuan's avatar
Liangzhe Yuan committed
49
50
from official.projects.movinet.google.configs import movinet_google
from official.projects.movinet.google.modeling import movinet_model_google
Dan Kondratyuk's avatar
Dan Kondratyuk committed
51
52
from official.projects.movinet.modeling import movinet
from official.projects.movinet.modeling import movinet_model
Dan Kondratyuk's avatar
Dan Kondratyuk committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# pylint: enable=unused-import

FLAGS = flags.FLAGS


def main(_):
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
  params = train_utils.parse_configuration(FLAGS)
  model_dir = FLAGS.model_dir
  if 'train' in FLAGS.mode:
    # Pure eval modes do not output yaml files. Otherwise continuous eval job
    # may race against the train job for writing the same file.
    train_utils.serialize_config(params, model_dir)

  if 'train_and_eval' in FLAGS.mode:
    assert (params.task.train_data.feature_shape ==
            params.task.validation_data.feature_shape), (
                f'train {params.task.train_data.feature_shape} != validate '
                f'{params.task.validation_data.feature_shape}')

  # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
  # can have significant impact on model speeds by utilizing float16 in case of
  # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
  # dtype is float16
  if params.runtime.mixed_precision_dtype:
    performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype)
  distribution_strategy = distribute_utils.get_distribution_strategy(
      distribution_strategy=params.runtime.distribution_strategy,
      all_reduce_alg=params.runtime.all_reduce_alg,
      num_gpus=params.runtime.num_gpus,
      tpu_address=params.runtime.tpu)
  with distribution_strategy.scope():
    task = task_factory.get_task(params.task, logging_dir=model_dir)

  train_lib.run_experiment(
      distribution_strategy=distribution_strategy,
      task=task,
      mode=FLAGS.mode,
      params=params,
      model_dir=model_dir)

if __name__ == '__main__':
  tfm_flags.define_flags()
  app.run(main)