model_training_utils.py 17.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""A light weight utilities to train NLP models."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
23
24
import os

from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
25
import tensorflow as tf
26
from official.utils.misc import distribution_utils
27

28
29
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
30

31
32
33
34
35
36
37
38
39
40

def _save_checkpoint(checkpoint, model_dir, checkpoint_prefix):
  """Saves model to with provided checkpoint prefix."""

  checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
  saved_path = checkpoint.save(checkpoint_path)
  logging.info('Saving model as TF checkpoint: %s', saved_path)
  return


41
42
43
44
45
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""
  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
Hongkun Yu's avatar
Hongkun Yu committed
46
47
48
49
  if not callable(input_fn):
    raise ValueError('`input_fn` should be a closure that returns a dataset.')
  iterator = iter(
      strategy.experimental_distribute_datasets_from_function(input_fn))
50
51
52
  return iterator


53
54
55
56
57
def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


58
def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
59
  """Calculates steps to run on device."""
60
61
62
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
63
64
65
66
67
68
69
70
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


71
def write_txt_summary(training_summary, summary_dir):
72
  """Writes a summary text file to record stats."""
73
  summary_path = os.path.join(summary_dir, _SUMMARY_TXT)
74
75
76
77
78
  with tf.io.gfile.GFile(summary_path, 'wb') as f:
    logging.info('Training Summary: \n%s', str(training_summary))
    f.write(json.dumps(training_summary, indent=4))


79
80
81
82
83
84
85
86
87
88
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
89
    steps_per_loop=1,
90
91
92
93
94
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
95
    custom_callbacks=None,
Chen Chen's avatar
Chen Chen committed
96
97
    run_eagerly=False,
    sub_model_export_name=None):
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
113
114
115
116
117
118
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
119
120
121
122
123
124
125
126
127
128
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
      metric_fn: A metrics function that returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
129
      custom_callbacks: A list of Keras Callbacks objects to run during
130
        training. More specifically, `on_batch_begin()`, `on_batch_end()`,
131
        methods are invoked during training.
132
133
      run_eagerly: Whether to run model training in pure eager execution. This
        should be disable for TPUStrategy.
Chen Chen's avatar
Chen Chen committed
134
135
136
137
138
      sub_model_export_name: If not None, will export `sub_model` returned by
        `model_fn` into checkpoint files. The name of intermediate checkpoint
        file is {sub_model_export_name}_step_{step}.ckpt and the last
        checkpint's name is {sub_model_export_name}.ckpt;
        if None, `sub_model` will not be exported as checkpoint.
139
140
141
142
143
144
145
146

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
Chen Chen's avatar
Chen Chen committed
147
148
        (4) sub_model_checkpoint_name is specified, but `sub_model` returned
        by `model_fn` is None.
149
150
151
152
153
154
155
156
157
158
159
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
160
161
162
163
164
165
166
167
                     '`steps_per_loop` and `steps_per_epoch` are required '
                     'parameters.')
  if steps_per_loop > steps_per_epoch:
    logging.error(
        'steps_per_loop: %d is specified to be greater than '
        ' steps_per_epoch: %d, we will use steps_per_epoch as'
        ' steps_per_loop.', steps_per_loop, steps_per_epoch)
    steps_per_loop = steps_per_epoch
168
169
  assert tf.executing_eagerly()

170
171
172
173
174
175
176
177
178
179
  if run_eagerly:
    if steps_per_loop > 1:
      raise ValueError(
          'steps_per_loop is used for performance optimization. When you want '
          'to run eagerly, you cannot leverage graph mode loop.')
    if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
      raise ValueError(
          'TPUStrategy should not run eagerly as it heavily replies on graph'
          ' optimization for the distributed system.')

180
181
182
183
184
185
186
187
  if eval_input_fn and (eval_steps is None or metric_fn is None):
    raise ValueError(
        '`eval_step` and `metric_fn` are required when `eval_input_fn ` '
        'is not none.')
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

188
189
  total_training_steps = steps_per_epoch * epochs

190
191
  # To reduce unnecessary send/receive input pipeline operation, we place input
  # pipeline ops in worker task.
192
193
194
195
196
197
198
199
200
  train_iterator = _get_input_iterator(train_input_fn, strategy)

  with distribution_utils.get_strategy_scope(strategy):
    # To correctly place the model weights on accelerators,
    # model and optimizer should be created in scope.
    model, sub_model = model_fn()
    if not hasattr(model, 'optimizer'):
      raise ValueError('User should set optimizer attribute to model '
                       'inside `model_fn`.')
Chen Chen's avatar
Chen Chen committed
201
202
203
204
    if sub_model_export_name and sub_model is None:
      raise ValueError('sub_model_export_name is specified as %s, but '
                       'sub_model is None.' % sub_model_export_name)

205
206
207
208
209
210
211
212
213
    optimizer = model.optimizer
    use_float16 = isinstance(
        optimizer, tf.keras.mixed_precision.experimental.LossScaleOptimizer)

    if init_checkpoint:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'initial checkpoint for core model.', init_checkpoint)
      checkpoint = tf.train.Checkpoint(model=sub_model)
Jing Li's avatar
Jing Li committed
214
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
215
216
217
218
219
220
221
222
223
224
225
226
227
      logging.info('Loading from checkpoint file completed')

    train_loss_metric = tf.keras.metrics.Mean(
        'training_loss', dtype=tf.float32)
    eval_metrics = [metric_fn()] if metric_fn else []
    # If evaluation is required, make a copy of metric as it will be used by
    # both train and evaluation.
    train_metrics = [
        metric.__class__.from_config(metric.get_config())
        for metric in eval_metrics
    ]

    # Create summary writers
228
    summary_dir = os.path.join(model_dir, 'summaries')
229
    eval_summary_writer = tf.summary.create_file_writer(
230
        os.path.join(summary_dir, 'eval'))
231
232
233
234
    if steps_per_loop >= _MIN_SUMMARY_STEPS:
      # Only writes summary when the stats are collected sufficiently over
      # enough steps.
      train_summary_writer = tf.summary.create_file_writer(
235
          os.path.join(summary_dir, 'train'))
236
237
238
239
240
241
242
243
244
245
246
247
248
    else:
      train_summary_writer = None

    # Collects training variables.
    training_vars = model.trainable_variables

    def _replicated_step(inputs):
      """Replicated training step."""

      inputs, labels = inputs
      with tf.GradientTape() as tape:
        model_outputs = model(inputs, training=True)
        loss = loss_fn(labels, model_outputs)
249
        if use_float16:
250
          scaled_loss = optimizer.get_scaled_loss(loss)
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
      if use_float16:
        scaled_grads = tape.gradient(scaled_loss, training_vars)
        grads = optimizer.get_unscaled_gradients(scaled_grads)
      else:
        grads = tape.gradient(loss, training_vars)
      optimizer.apply_gradients(zip(grads, training_vars))
      # For reporting, the metric takes the mean of losses.
      train_loss_metric.update_state(loss)
      for metric in train_metrics:
        metric.update_state(labels, model_outputs)

    @tf.function
    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      if not isinstance(steps, tf.Tensor):
        raise ValueError('steps should be an Tensor. Python object may cause '
                         'retracing.')

      for _ in tf.range(steps):
        strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))
281

282
283
    def train_single_step(iterator):
      """Performs a distributed training step.
284

285
286
      Args:
        iterator: the distributed iterator of training datasets.
287

288
289
290
291
      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))
292

293
294
    def test_step(iterator):
      """Calculates evaluation metrics on distributed devices."""
295

296
297
      def _test_step_fn(inputs):
        """Replicated accuracy calculation."""
298

299
300
301
302
        inputs, labels = inputs
        model_outputs = model(inputs, training=False)
        for metric in eval_metrics:
          metric.update_state(labels, model_outputs)
303

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
      strategy.experimental_run_v2(_test_step_fn, args=(next(iterator),))

    if not run_eagerly:
      train_single_step = tf.function(train_single_step)
      test_step = tf.function(test_step)

    def _run_evaluation(current_training_step, test_iterator):
      """Runs validation steps and aggregate metrics."""
      for _ in range(eval_steps):
        test_step(test_iterator)

      with eval_summary_writer.as_default():
        for metric in eval_metrics + model.metrics:
          metric_value = _float_metric_value(metric)
          logging.info('Step: [%d] Validation %s = %f', current_training_step,
                       metric.name, metric_value)
          tf.summary.scalar(
              metric.name, metric_value, step=current_training_step)
        eval_summary_writer.flush()

    def _run_callbacks_on_batch_begin(batch):
      """Runs custom callbacks at the start of every step."""
      if not custom_callbacks:
        return
      for callback in custom_callbacks:
        callback.on_batch_begin(batch)

331
    def _run_callbacks_on_batch_end(batch, logs):
332
333
334
335
      """Runs custom callbacks at the end of every step."""
      if not custom_callbacks:
        return
      for callback in custom_callbacks:
336
        callback.on_batch_end(batch, logs)
337
338
339

    # Training loop starts here.
    checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
Chen Chen's avatar
Chen Chen committed
340
341
342
    sub_model_checkpoint = tf.train.Checkpoint(
        model=sub_model) if sub_model_export_name else None

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint_file:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'checkpoint', latest_checkpoint_file)
      checkpoint.restore(latest_checkpoint_file)
      logging.info('Loading from checkpoint file completed')

    current_step = optimizer.iterations.numpy()
    checkpoint_name = 'ctl_step_{step}.ckpt'

    while current_step < total_training_steps:
      # Training loss/metric are taking average over steps inside micro
      # training loop. We reset the their values before each round.
      train_loss_metric.reset_states()
      for metric in train_metrics + model.metrics:
        metric.reset_states()

      _run_callbacks_on_batch_begin(current_step)
      # Runs several steps in the host while loop.
363
      steps = steps_to_run(current_step, steps_per_epoch, steps_per_loop)
364

365
      if tf.test.is_built_with_cuda():
366
367
        # TODO(zongweiz): merge with train_steps once tf.while_loop
        # GPU performance bugs are fixed.
368
369
        for _ in range(steps):
          train_single_step(train_iterator)
370
371
372
373
      else:
        # Converts steps to a Tensor to avoid tf.function retracing.
        train_steps(train_iterator,
                    tf.convert_to_tensor(steps, dtype=tf.int32))
374
375
      train_loss = _float_metric_value(train_loss_metric)
      _run_callbacks_on_batch_end(current_step, {'loss': train_loss})
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
      current_step += steps

      # Updates training logging.
      training_status = 'Train Step: %d/%d  / loss = %s' % (
          current_step, total_training_steps, train_loss)

      if train_summary_writer:
        with train_summary_writer.as_default():
          tf.summary.scalar(
              train_loss_metric.name, train_loss, step=current_step)
          for metric in train_metrics + model.metrics:
            metric_value = _float_metric_value(metric)
            training_status += '  %s = %f' % (metric.name, metric_value)
            tf.summary.scalar(metric.name, metric_value, step=current_step)
          train_summary_writer.flush()
      logging.info(training_status)

      # Saves model checkpoints and run validation steps at every epoch end.
      if current_step % steps_per_epoch == 0:
        # To avoid repeated model saving, we do not save after the last
        # step of training.
        if current_step < total_training_steps:
          _save_checkpoint(checkpoint, model_dir,
                           checkpoint_name.format(step=current_step))
Chen Chen's avatar
Chen Chen committed
400
401
402
403
          if sub_model_export_name:
            _save_checkpoint(
                sub_model_checkpoint, model_dir,
                '%s_step_%d.ckpt' % (sub_model_export_name, current_step))
404
405
406
407
408
409
410
        if eval_input_fn:
          logging.info('Running evaluation after step: %s.', current_step)
          _run_evaluation(current_step,
                          _get_input_iterator(eval_input_fn, strategy))
          # Re-initialize evaluation metric.
          for metric in eval_metrics + model.metrics:
            metric.reset_states()
411

412
413
    _save_checkpoint(checkpoint, model_dir,
                     checkpoint_name.format(step=current_step))
Chen Chen's avatar
Chen Chen committed
414
415
416
    if sub_model_export_name:
      _save_checkpoint(sub_model_checkpoint, model_dir,
                       '%s.ckpt' % sub_model_export_name)
417

418
419
420
421
    if eval_input_fn:
      logging.info('Running final evaluation after training is complete.')
      _run_evaluation(current_step,
                      _get_input_iterator(eval_input_fn, strategy))
422

423
424
425
426
427
428
429
430
431
    training_summary = {
        'total_training_steps': total_training_steps,
        'train_loss': _float_metric_value(train_loss_metric),
    }
    if eval_metrics:
      # TODO(hongkuny): Cleans up summary reporting in text.
      training_summary['last_train_metrics'] = _float_metric_value(
          train_metrics[0])
      training_summary['eval_metrics'] = _float_metric_value(eval_metrics[0])
432

433
    write_txt_summary(training_summary, summary_dir)
434

435
    return model