webcam.py 15.8 KB
Newer Older
Corey Lynch's avatar
Corey Lynch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

r"""Collect images from multiple simultaneous webcams.

Usage:

1. Define some environment variables that describe what you're collecting.
dataset=your_dataset_name
mode=train
num_views=2
viddir=/tmp/tcn/videos
tmp_imagedir=/tmp/tcn/tmp_images
debug_vids=1

2. Run the script.
export DISPLAY=:0.0 && \
root=learning/brain/research/tcn && \
bazel build -c opt --copt=-mavx tcn/webcam && \
bazel-bin/tcn/webcam \
--dataset $dataset \
--mode $mode \
--num_views $num_views \
--tmp_imagedir $tmp_imagedir \
--viddir $viddir \
--debug_vids 1 \
--logtostderr

3. Hit Ctrl-C when done collecting, upon which the script will compile videos
for each view and optionally a debug video concatenating multiple
simultaneous views.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import multiprocessing
from multiprocessing import Process
import os
import subprocess
import sys
import time
import cv2
import matplotlib
matplotlib.use('TkAgg')
from matplotlib import animation  # pylint: disable=g-import-not-at-top
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)


tf.flags.DEFINE_string('dataset', '', 'Name of the dataset we`re collecting.')
tf.flags.DEFINE_string('mode', '',
                       'What type of data we`re collecting. E.g.:'
                       '`train`,`valid`,`test`, or `demo`')
tf.flags.DEFINE_string('seqname', '',
                       'Name of this sequence. If empty, the script will use'
                       'the name seq_N+1 where seq_N is the latest'
                       'integer-named sequence in the videos directory.')
tf.flags.DEFINE_integer('num_views', 2,
                        'Number of webcams.')
tf.flags.DEFINE_string('tmp_imagedir', '/tmp/tcn/data',
                       'Temporary outdir to write images.')
tf.flags.DEFINE_string('viddir', '/tmp/tcn/videos',
                       'Base directory to write debug videos.')
tf.flags.DEFINE_boolean('debug_vids', True,
                        'Whether to generate debug vids with multiple'
                        'concatenated views.')
tf.flags.DEFINE_string('debug_lhs_view', '0',
                       'Which viewpoint to use for the lhs video.')
tf.flags.DEFINE_string('debug_rhs_view', '1',
                       'Which viewpoint to use for the rhs video.')
tf.flags.DEFINE_integer('height', 1080, 'Raw input height.')
tf.flags.DEFINE_integer('width', 1920, 'Raw input width.')
tf.flags.DEFINE_string('webcam_ports', None,
                       'Comma-separated list of each webcam usb port.')
FLAGS = tf.app.flags.FLAGS


class ImageQueue(object):
  """An image queue holding each stream's most recent image.

  Basically implements a process-safe collections.deque(maxlen=1).
  """

  def __init__(self):
    self.lock = multiprocessing.Lock()
    self._queue = multiprocessing.Queue(maxsize=1)

  def append(self, data):
    with self.lock:
      if self._queue.full():
        # Pop the first element.
        _ = self._queue.get()
      self._queue.put(data)

  def get(self):
    with self.lock:
      return self._queue.get()

  def empty(self):
    return self._queue.empty()

  def close(self):
    return self._queue.close()


class WebcamViewer(object):
  """A class which displays a live stream from the webcams."""

  def __init__(self, display_queues):
    """Create a WebcamViewer instance."""
    self.height = FLAGS.height
    self.width = FLAGS.width
    self.queues = display_queues

  def _get_next_images(self):
    """Gets the next image to display."""
    # Wait for one image per view.
    not_found = True
    while not_found:
      if True in [q.empty() for q in self.queues]:
        # At least one image queue is empty; wait.
        continue
      else:
        # Retrieve the images.
        latest = [q.get() for q in self.queues]
        combined = np.concatenate(latest, axis=1)
      not_found = False
    return combined

  def run(self):
    """Displays the Kcam live stream in a window.

    This function blocks until the window is closed.
    """
    fig, rgb_axis = plt.subplots()

    image_rows = self.height
    image_cols = self.width * FLAGS.num_views
    initial_image = np.zeros((image_rows, image_cols, 3))
    rgb_image = rgb_axis.imshow(initial_image, interpolation='nearest')

    def update_figure(frame_index):
      """Animation function for matplotlib FuncAnimation. Updates the image.

      Args:
        frame_index: The frame number.
      Returns:
        An iterable of matplotlib drawables to clear.
      """
      _ = frame_index
      images = self._get_next_images()
      images = images[..., [2, 1, 0]]
      rgb_image.set_array(images)
      return rgb_image,

    # We must keep a reference to this animation in order for it to work.
    unused_animation = animation.FuncAnimation(
        fig, update_figure, interval=50, blit=True)
    mng = plt.get_current_fig_manager()
    mng.resize(*mng.window.maxsize())
    plt.show()


def reconcile(queues, write_queue):
  """Gets a list of concurrent images from each view queue.

  This waits for latest images to be available in all view queues,
  then continuously:
  - Creates a list of current images for each view.
  - Writes the list to a queue of image lists to write to disk.
  Args:
    queues: A list of `ImageQueues`, holding the latest image from each webcam.
    write_queue: A multiprocessing.Queue holding lists of concurrent images.
  """
  # Loop forever.
  while True:
    # Wait till all queues have an image.
    if True in [q.empty() for q in queues]:
      continue
    else:
      # Retrieve all views' images.
      latest = [q.get() for q in queues]
      # Copy the list of all concurrent images to the write queue.
      write_queue.put(latest)


def persist(write_queue, view_dirs):
  """Pulls lists of concurrent images off a write queue, writes them to disk.

  Args:
    write_queue: A multiprocessing.Queue holding lists of concurrent images;
      one image per view.
    view_dirs: A list of strings, holding the output image directories for each
      view.
  """
  timestep = 0
  while True:
    # Wait till there is work in the queue.
    if write_queue.empty():
      continue
    # Get a list of concurrent images to write to disk.
    view_ims = write_queue.get()
    for view_idx, image in enumerate(view_ims):
      view_base = view_dirs[view_idx]
      # Assign all concurrent view images the same sequence timestep.
      fname = os.path.join(view_base, '%s.png' % str(timestep).zfill(10))
      cv2.imwrite(fname, image)
    # Move to the next timestep.
    timestep += 1


def get_image(camera):
  """Captures a single image from the camera and returns it in PIL format."""
  data = camera.read()
  _, im = data
  return im


def capture_webcam(camera, display_queue, reconcile_queue):
  """Captures images from simultaneous webcams, writes them to queues.

  Args:
    camera: A cv2.VideoCapture object representing an open webcam stream.
    display_queue: An ImageQueue.
    reconcile_queue: An ImageQueue.
  """
  # Take some ramp images to allow cams to adjust for brightness etc.
  for i in range(60):
    tf.logging.info('Taking ramp image %d.' % i)
    get_image(camera)

  cnt = 0
  start = time.time()
  while True:
    # Get images for all cameras.
    im = get_image(camera)
    # Replace the current image in the display and reconcile queues.
    display_queue.append(im)
    reconcile_queue.append(im)
    cnt += 1
    current = time.time()
    if cnt % 100 == 0:
      tf.logging.info('Collected %s of video, %d frames at ~%.2f fps.' % (
          timer(start, current), cnt, cnt/(current-start)))


def timer(start, end):
  """Returns a formatted time elapsed."""
  hours, rem = divmod(end-start, 3600)
  minutes, seconds = divmod(rem, 60)
  return '{:0>2}:{:0>2}:{:05.2f}'.format(int(hours), int(minutes), seconds)


def display_webcams(display_queues):
  """Builds an WebcamViewer to animate incoming images, runs it."""
  viewer = WebcamViewer(display_queues)
  viewer.run()


def create_vids(view_dirs, seqname):
  """Creates one video per view per sequence."""
  vidbase = os.path.join(FLAGS.viddir, FLAGS.dataset, FLAGS.mode)
  if not os.path.exists(vidbase):
    os.makedirs(vidbase)
  vidpaths = []
  for idx, view_dir in enumerate(view_dirs):
    vidname = os.path.join(vidbase, '%s_view%d.mp4' % (seqname, idx))
    encode_vid_cmd = r'mencoder mf://%s/*.png \
    -mf fps=29:type=png \
    -ovc lavc -lavcopts vcodec=mpeg4:mbd=2:trell \
    -oac copy -o %s' % (view_dir, vidname)
    os.system(encode_vid_cmd)
    vidpaths.append(vidname)

  debugpath = None
  if FLAGS.debug_vids:
    lhs = vidpaths[FLAGS.debug_lhs_view]
    rhs = vidpaths[FLAGS.debug_rhs_view]
    debug_base = os.path.join('%s_debug' % FLAGS.viddir, FLAGS.dataset,
                              FLAGS.mode)
    if not os.path.exists(debug_base):
      os.makedirs(debug_base)
    debugpath = '%s/%s.mp4' % (debug_base, seqname)
    os.system(r"avconv \
      -i %s \
      -i %s \
      -filter_complex '[0:v]pad=iw*2:ih[int];[int][1:v]overlay=W/2:0[vid]' \
      -map [vid] \
      -c:v libx264 \
      -crf 23 \
      -preset veryfast \
      %s" % (lhs, rhs, debugpath))

  return vidpaths, debugpath


def setup_paths():
  """Sets up the necessary paths to collect videos."""
  assert FLAGS.dataset
  assert FLAGS.mode
  assert FLAGS.num_views

  # Setup directory for final images used to create videos for this sequence.
  tmp_imagedir = os.path.join(FLAGS.tmp_imagedir, FLAGS.dataset, FLAGS.mode)
  if not os.path.exists(tmp_imagedir):
    os.makedirs(tmp_imagedir)

  # Create a base directory to hold all sequence videos if it doesn't exist.
  vidbase = os.path.join(FLAGS.viddir, FLAGS.dataset, FLAGS.mode)
  if not os.path.exists(vidbase):
    os.makedirs(vidbase)

  # Get one directory per concurrent view and a sequence name.
  view_dirs, seqname = get_view_dirs(vidbase, tmp_imagedir)

  # Get an output path to each view's video.
  vid_paths = []
  for idx, _ in enumerate(view_dirs):
    vid_path = os.path.join(vidbase, '%s_view%d.mp4' % (seqname, idx))
    vid_paths.append(vid_path)

  # Optionally build paths to debug_videos.
  debug_path = None
  if FLAGS.debug_vids:
    debug_base = os.path.join('%s_debug' % FLAGS.viddir, FLAGS.dataset,
                              FLAGS.mode)
    if not os.path.exists(debug_base):
      os.makedirs(debug_base)
    debug_path = '%s/%s.mp4' % (debug_base, seqname)

  return view_dirs, vid_paths, debug_path


def get_view_dirs(vidbase, tmp_imagedir):
  """Creates and returns one view directory per webcam."""
  # Create and append a sequence name.
  if FLAGS.seqname:
    seqname = FLAGS.seqname
  else:
    # If there's no video directory, this is the first sequence.
    if not os.listdir(vidbase):
      seqname = '0'
    else:
      # Otherwise, get the latest sequence name and increment it.
      seq_names = [i.split('_')[0] for i in os.listdir(vidbase)]
      latest_seq = sorted(map(int, seq_names), reverse=True)[0]
      seqname = str(latest_seq+1)
    tf.logging.info('No seqname specified, using: %s' % seqname)
  view_dirs = [os.path.join(
      tmp_imagedir, '%s_view%d' % (seqname, v)) for v in range(FLAGS.num_views)]
  for d in view_dirs:
    if not os.path.exists(d):
      os.makedirs(d)
  return view_dirs, seqname


def get_cameras():
  """Opens cameras using cv2, ensures they can take images."""
  # Try to get free webcam ports.
  if FLAGS.webcam_ports:
    ports = map(int, FLAGS.webcam_ports.split(','))
  else:
    ports = range(FLAGS.num_views)
  cameras = [cv2.VideoCapture(i) for i in ports]

  if not all([i.isOpened() for i in cameras]):
    try:
      # Try to find and kill hanging cv2 process_ids.
      output = subprocess.check_output(['lsof -t /dev/video*'], shell=True)
      tf.logging.info('Found hanging cv2 process_ids: \n')
      tf.logging.info(output)
      tf.logging.info('Killing hanging processes...')
      for process_id in output.split('\n')[:-1]:
        subprocess.call(['kill %s' % process_id], shell=True)
      time.sleep(3)
      # Recapture webcams.
      cameras = [cv2.VideoCapture(i) for i in ports]
    except subprocess.CalledProcessError:
      raise ValueError(
          'Cannot connect to cameras. Try running: \n'
          'ls -ltrh /dev/video* \n '
          'to see which ports your webcams are connected to. Then hand those '
          'ports as a comma-separated list to --webcam_ports, e.g. '
          '--webcam_ports 0,1')

  # Verify each camera is able to capture images.
  ims = map(get_image, cameras)
  assert False not in [i is not None for i in ims]
  return cameras


def launch_images_to_videos(view_dirs, vid_paths, debug_path):
  """Launch job in separate process to convert images to videos."""

  f = 'learning/brain/research/tcn/dataset/images_to_videos.py'
  cmd = ['python %s ' % f]
  cmd += ['--view_dirs %s ' % ','.join(i for i in view_dirs)]
  cmd += ['--vid_paths %s ' % ','.join(i for i in vid_paths)]
  cmd += ['--debug_path %s ' % debug_path]
  cmd += ['--debug_lhs_view %s ' % FLAGS.debug_lhs_view]
  cmd += ['--debug_rhs_view %s ' % FLAGS.debug_rhs_view]
  cmd += [' & ']
  cmd = ''.join(i for i in cmd)

  # Call images_to_videos asynchronously.
  fnull = open(os.devnull, 'w')
  subprocess.Popen([cmd], stdout=fnull, stderr=subprocess.STDOUT, shell=True)

  for p in vid_paths:
    tf.logging.info('Writing final video to: %s' % p)
  if debug_path:
    tf.logging.info('Writing debug video to: %s' % debug_path)


def main(_):
  # Initialize the camera capture objects.
  cameras = get_cameras()
  # Get one output directory per view.
  view_dirs, vid_paths, debug_path = setup_paths()
  try:
    # Wait for user input.
    try:
      tf.logging.info('About to write to:')
      for v in view_dirs:
        tf.logging.info(v)
      raw_input('Press Enter to continue...')
    except SyntaxError:
      pass

    # Create a queue per view for displaying and saving images.
    display_queues = [ImageQueue() for _ in range(FLAGS.num_views)]
    reconcile_queues = [ImageQueue() for _ in range(FLAGS.num_views)]

    # Create a queue for collecting all tuples of multi-view images to write to
    # disk.
    write_queue = multiprocessing.Queue()

    processes = []
    # Create a process to display collected images in real time.
    processes.append(Process(target=display_webcams, args=(display_queues,)))
    # Create a process to collect the latest simultaneous images from each view.
    processes.append(Process(
        target=reconcile, args=(reconcile_queues, write_queue,)))
    # Create a process to collect the latest simultaneous images from each view.
    processes.append(Process(
        target=persist, args=(write_queue, view_dirs,)))

    for (cam, dq, rq) in zip(cameras, display_queues, reconcile_queues):
      processes.append(Process(
          target=capture_webcam, args=(cam, dq, rq,)))

    for p in processes:
      p.start()
    for p in processes:
      p.join()

  except KeyboardInterrupt:
    # Close the queues.
    for q in display_queues + reconcile_queues:
      q.close()
    # Release the cameras.
    for cam in cameras:
      cam.release()

    # Launch images_to_videos script asynchronously.
    launch_images_to_videos(view_dirs, vid_paths, debug_path)

    try:
      sys.exit(0)
    except SystemExit:
      os._exit(0)  # pylint: disable=protected-access


if __name__ == '__main__':
  tf.app.run()