scopes.py 4.33 KB
Newer Older
Martin Wicke's avatar
Martin Wicke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the new arg_scope used for TF-Slim ops.

  Allows one to define models much more compactly by eliminating boilerplate
  code. This is accomplished through the use of argument scoping (arg_scope).

  Example of how to use scopes.arg_scope:

  with slim.arg_scope(ops.conv2d, padding='SAME',
                      stddev=0.01, weight_decay=0.0005):
    net = ops.conv2d(inputs, 64, [11, 11], 4, padding='VALID', scope='conv1')
    net = ops.conv2d(net, 256, [5, 5], scope='conv2')

  The first call to conv2d will use predefined args:
    ops.conv2d(inputs, 64, [11, 11], 4, padding='VALID',
              stddev=0.01, weight_decay=0.0005, scope='conv1')

  The second call to Conv will overwrite padding:
    ops.conv2d(inputs, 256, [5, 5], padding='SAME',
               stddev=0.01, weight_decay=0.0005, scope='conv2')

  Example of how to use scopes.add_arg_scope:

  @scopes.add_arg_scope
  def conv2d(*args, **kwargs)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import contextlib
import functools


from tensorflow.python.framework import ops

_ARGSTACK_KEY = ("__arg_stack",)

_DECORATED_OPS = set()


def _get_arg_stack():
  stack = ops.get_collection(_ARGSTACK_KEY)
  if stack:
    return stack[0]
  else:
    stack = [{}]
    ops.add_to_collection(_ARGSTACK_KEY, stack)
    return stack


def _current_arg_scope():
  stack = _get_arg_stack()
  return stack[-1]


def _add_op(op):
  key_op = (op.__module__, op.__name__)
  if key_op not in _DECORATED_OPS:
    _DECORATED_OPS.add(key_op)


@contextlib.contextmanager
def arg_scope(list_ops, **kwargs):
  """Stores the default arguments for the given set of list_ops.

  Args:
    list_ops: List or tuple of operations to set argument scope for. Every op in
              list_ops need to be decorated with @add_arg_scope to work.
    **kwargs: keyword=value that will define the defaults for each op in
              list_ops. All the ops need to accept the given set of arguments.

  Yields:
    the current_scope, which is a dictionary of {op: {arg: value}}
  Raises:
    TypeError: if list_ops is not a list or a tuple.
    ValueError: if any op in list_ops has not be decorated with @add_arg_scope.
  """
  if not isinstance(list_ops, (list, tuple)):
    raise TypeError("list_ops is not a list or a tuple")
  try:
    current_scope = _current_arg_scope().copy()
    for op in list_ops:
      key_op = (op.__module__, op.__name__)
      if not has_arg_scope(op):
        raise ValueError("%s is not decorated with @add_arg_scope", key_op)
      if key_op in current_scope:
        current_kwargs = current_scope[key_op].copy()
        current_kwargs.update(kwargs)
        current_scope[key_op] = current_kwargs
      else:
        current_scope[key_op] = kwargs.copy()
    _get_arg_stack().append(current_scope)
    yield current_scope
  finally:
    _get_arg_stack().pop()


def add_arg_scope(func):
  """Decorates a function with args so it can be used within an arg_scope.

  Args:
    func: function to decorate.

  Returns:
    A tuple with the decorated function func_with_args().
  """
  @functools.wraps(func)
  def func_with_args(*args, **kwargs):
    current_scope = _current_arg_scope()
    current_args = kwargs
    key_func = (func.__module__, func.__name__)
    if key_func in current_scope:
      current_args = current_scope[key_func].copy()
      current_args.update(kwargs)
    return func(*args, **current_args)
  _add_op(func)
  return func_with_args


def has_arg_scope(func):
  """Checks whether a func has been decorated with @add_arg_scope or not.

  Args:
    func: function to check.

  Returns:
    a boolean.
  """
  key_op = (func.__module__, func.__name__)
  return key_op in _DECORATED_OPS