inception_eval.py 6.41 KB
Newer Older
Martin Wicke's avatar
Martin Wicke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A library to evaluate Inception on a single GPU.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from datetime import datetime
import math
import os.path
import time


import numpy as np
import tensorflow as tf

from inception import image_processing
from inception import inception_model as inception


FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string('eval_dir', '/tmp/imagenet_eval',
                           """Directory where to write event logs.""")
tf.app.flags.DEFINE_string('checkpoint_dir', '/tmp/imagenet_train',
                           """Directory where to read model checkpoints.""")

# Flags governing the frequency of the eval.
tf.app.flags.DEFINE_integer('eval_interval_secs', 60 * 5,
                            """How often to run the eval.""")
tf.app.flags.DEFINE_boolean('run_once', False,
                            """Whether to run eval only once.""")

# Flags governing the data used for the eval.
tf.app.flags.DEFINE_integer('num_examples', 50000,
                            """Number of examples to run. Note that the eval """
                            """ImageNet dataset contains 50000 examples.""")
tf.app.flags.DEFINE_string('subset', 'validation',
                           """Either 'validation' or 'train'.""")


def _eval_once(saver, summary_writer, top_1_op, top_5_op, summary_op):
  """Runs Eval once.

  Args:
    saver: Saver.
    summary_writer: Summary writer.
    top_1_op: Top 1 op.
    top_5_op: Top 5 op.
    summary_op: Summary op.
  """
  with tf.Session() as sess:
    ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
    if ckpt and ckpt.model_checkpoint_path:
      if os.path.isabs(ckpt.model_checkpoint_path):
        # Restores from checkpoint with absolute path.
        saver.restore(sess, ckpt.model_checkpoint_path)
      else:
        # Restores from checkpoint with relative path.
        saver.restore(sess, os.path.join(FLAGS.checkpoint_dir,
                                         ckpt.model_checkpoint_path))

      # Assuming model_checkpoint_path looks something like:
      #   /my-favorite-path/imagenet_train/model.ckpt-0,
      # extract global_step from it.
      global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
      print('Succesfully loaded model from %s at step=%s.' %
            (ckpt.model_checkpoint_path, global_step))
    else:
      print('No checkpoint file found')
      return

    # Start the queue runners.
    coord = tf.train.Coordinator()
    try:
      threads = []
      for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
        threads.extend(qr.create_threads(sess, coord=coord, daemon=True,
                                         start=True))

      num_iter = int(math.ceil(FLAGS.num_examples / FLAGS.batch_size))
      # Counts the number of correct predictions.
      count_top_1 = 0.0
      count_top_5 = 0.0
      total_sample_count = num_iter * FLAGS.batch_size
      step = 0

      print('%s: starting evaluation on (%s).' % (datetime.now(), FLAGS.subset))
      start_time = time.time()
      while step < num_iter and not coord.should_stop():
        top_1, top_5 = sess.run([top_1_op, top_5_op])
        count_top_1 += np.sum(top_1)
        count_top_5 += np.sum(top_5)
        step += 1
        if step % 20 == 0:
          duration = time.time() - start_time
          sec_per_batch = duration / 20.0
          examples_per_sec = FLAGS.batch_size / sec_per_batch
          print('%s: [%d batches out of %d] (%.1f examples/sec; %.3f'
                'sec/batch)' % (datetime.now(), step, num_iter,
                                examples_per_sec, sec_per_batch))
          start_time = time.time()

      # Compute precision @ 1.
      precision_at_1 = count_top_1 / total_sample_count
      recall_at_5 = count_top_5 / total_sample_count
      print('%s: precision @ 1 = %.4f recall @ 5 = %.4f [%d examples]' %
            (datetime.now(), precision_at_1, recall_at_5, total_sample_count))

      summary = tf.Summary()
      summary.ParseFromString(sess.run(summary_op))
      summary.value.add(tag='Precision @ 1', simple_value=precision_at_1)
      summary.value.add(tag='Recall @ 5', simple_value=recall_at_5)
      summary_writer.add_summary(summary, global_step)

    except Exception as e:  # pylint: disable=broad-except
      coord.request_stop(e)

    coord.request_stop()
    coord.join(threads, stop_grace_period_secs=10)


def evaluate(dataset):
  """Evaluate model on Dataset for a number of steps."""
  with tf.Graph().as_default():
    # Get images and labels from the dataset.
    images, labels = image_processing.inputs(dataset)

    # Number of classes in the Dataset label set plus 1.
    # Label 0 is reserved for an (unused) background class.
    num_classes = dataset.num_classes() + 1

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits, _ = inception.inference(images, num_classes)

    # Calculate predictions.
    top_1_op = tf.nn.in_top_k(logits, labels, 1)
    top_5_op = tf.nn.in_top_k(logits, labels, 5)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        inception.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.merge_all_summaries()

    graph_def = tf.get_default_graph().as_graph_def()
    summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir,
                                            graph_def=graph_def)

    while True:
      _eval_once(saver, summary_writer, top_1_op, top_5_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs)