optimizers.py 1.69 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Pengchong Jin's avatar
Pengchong Jin committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Pengchong Jin's avatar
Pengchong Jin committed
15
16
17
18
19
20
21
22
23
"""Optimizers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

import numpy as np
24
import tensorflow as tf
Pengchong Jin's avatar
Pengchong Jin committed
25
26
27
28
29
30
31
32
33
34
35


class OptimizerFactory(object):
  """Class to generate optimizer function."""

  def __init__(self, params):
    """Creates optimized based on the specified flags."""
    if params.type == 'momentum':
      self._optimizer = functools.partial(
          tf.keras.optimizers.SGD,
          momentum=params.momentum,
Pengchong Jin's avatar
Pengchong Jin committed
36
          nesterov=params.nesterov)
Pengchong Jin's avatar
Pengchong Jin committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    elif params.type == 'adam':
      self._optimizer = tf.keras.optimizers.Adam
    elif params.type == 'adadelta':
      self._optimizer = tf.keras.optimizers.Adadelta
    elif params.type == 'adagrad':
      self._optimizer = tf.keras.optimizers.Adagrad
    elif params.type == 'rmsprop':
      self._optimizer = functools.partial(
          tf.keras.optimizers.RMSprop, momentum=params.momentum)
    else:
      raise ValueError('Unsupported optimizer type `{}`.'.format(params.type))

  def __call__(self, learning_rate):
    return self._optimizer(learning_rate=learning_rate)