common.py 15.7 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

15
"""Common util functions and classes used by both keras cifar and imagenet."""
16
17
18
19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
import os
21

Toby Boyd's avatar
Toby Boyd committed
22
23
from absl import flags
import tensorflow as tf
24

25
import tensorflow_model_optimization as tfmot
26
from official.utils.flags import core as flags_core
27
from official.utils.misc import keras_utils
28

Shining Sun's avatar
Shining Sun committed
29
FLAGS = flags.FLAGS
Shining Sun's avatar
Shining Sun committed
30
BASE_LEARNING_RATE = 0.1  # This matches Jing's version.
31
TRAIN_TOP_1 = 'training_accuracy_top_1'
Hongkun Yu's avatar
Hongkun Yu committed
32
LR_SCHEDULE = [  # (multiplier, epoch to start) tuples
Hongkun Yu's avatar
Hongkun Yu committed
33
34
35
36
    (1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
]


37
38
39
40
class PiecewiseConstantDecayWithWarmup(
    tf.keras.optimizers.schedules.LearningRateSchedule):
  """Piecewise constant decay with warmup schedule."""

Hongkun Yu's avatar
Hongkun Yu committed
41
42
43
44
45
46
47
48
  def __init__(self,
               batch_size,
               epoch_size,
               warmup_epochs,
               boundaries,
               multipliers,
               compute_lr_on_cpu=True,
               name=None):
49
50
51
52
53
54
    super(PiecewiseConstantDecayWithWarmup, self).__init__()
    if len(boundaries) != len(multipliers) - 1:
      raise ValueError('The length of boundaries must be 1 less than the '
                       'length of multipliers')

    base_lr_batch_size = 256
Zongwei Zhou's avatar
Zongwei Zhou committed
55
    steps_per_epoch = epoch_size // batch_size
56
57

    self.rescaled_lr = BASE_LEARNING_RATE * batch_size / base_lr_batch_size
Zongwei Zhou's avatar
Zongwei Zhou committed
58
    self.step_boundaries = [float(steps_per_epoch) * x for x in boundaries]
59
    self.lr_values = [self.rescaled_lr * m for m in multipliers]
Zongwei Zhou's avatar
Zongwei Zhou committed
60
    self.warmup_steps = warmup_epochs * steps_per_epoch
61
62
63
    self.compute_lr_on_cpu = compute_lr_on_cpu
    self.name = name

64
    self.learning_rate_ops_cache = {}
65
66
67
68
69
70
71
72

  def __call__(self, step):
    if tf.executing_eagerly():
      return self._get_learning_rate(step)

    # In an eager function or graph, the current implementation of optimizer
    # repeatedly call and thus create ops for the learning rate schedule. To
    # avoid this, we cache the ops if not executing eagerly.
73
74
    graph = tf.compat.v1.get_default_graph()
    if graph not in self.learning_rate_ops_cache:
75
76
      if self.compute_lr_on_cpu:
        with tf.device('/device:CPU:0'):
77
          self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
78
      else:
79
80
        self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
    return self.learning_rate_ops_cache[graph]
81
82
83

  def _get_learning_rate(self, step):
    """Compute learning rate at given step."""
ayushmankumar7's avatar
ayushmankumar7 committed
84
    with tf.name_scope('PiecewiseConstantDecayWithWarmup'):
Hongkun Yu's avatar
Hongkun Yu committed
85

86
87
88
      def warmup_lr(step):
        return self.rescaled_lr * (
            tf.cast(step, tf.float32) / tf.cast(self.warmup_steps, tf.float32))
Hongkun Yu's avatar
Hongkun Yu committed
89

90
      def piecewise_lr(step):
Hongkun Yu's avatar
Hongkun Yu committed
91
92
93
94
        return tf.compat.v1.train.piecewise_constant(step, self.step_boundaries,
                                                     self.lr_values)

      return tf.cond(step < self.warmup_steps, lambda: warmup_lr(step),
95
96
97
98
99
100
101
102
103
104
105
106
107
108
                     lambda: piecewise_lr(step))

  def get_config(self):
    return {
        'rescaled_lr': self.rescaled_lr,
        'step_boundaries': self.step_boundaries,
        'lr_values': self.lr_values,
        'warmup_steps': self.warmup_steps,
        'compute_lr_on_cpu': self.compute_lr_on_cpu,
        'name': self.name
    }


def get_optimizer(learning_rate=0.1):
109
110
  """Returns optimizer to use."""
  # The learning_rate is overwritten at the beginning of each step by callback.
Scott Zhu's avatar
Scott Zhu committed
111
  return tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=0.9)
112
113


Hongkun Yu's avatar
Hongkun Yu committed
114
115
116
def get_callbacks(pruning_method=None,
                  enable_checkpoint_and_export=False,
                  model_dir=None):
117
  """Returns common callbacks."""
118
119
120
121
  time_callback = keras_utils.TimeHistory(
      FLAGS.batch_size,
      FLAGS.log_steps,
      logdir=FLAGS.model_dir if FLAGS.enable_tensorboard else None)
122
123
  callbacks = [time_callback]

124
125
  if FLAGS.enable_tensorboard:
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
Hongkun Yu's avatar
Hongkun Yu committed
126
        log_dir=FLAGS.model_dir, profile_batch=FLAGS.profile_steps)
127
128
    callbacks.append(tensorboard_callback)

129
130
131
132
  is_pruning_enabled = pruning_method is not None
  if is_pruning_enabled:
    callbacks.append(tfmot.sparsity.keras.UpdatePruningStep())
    if model_dir is not None:
Hongkun Yu's avatar
Hongkun Yu committed
133
134
135
      callbacks.append(
          tfmot.sparsity.keras.PruningSummaries(
              log_dir=model_dir, profile_batch=0))
136
137
138
139
140

  if enable_checkpoint_and_export:
    if model_dir is not None:
      ckpt_full_path = os.path.join(model_dir, 'model.ckpt-{epoch:04d}')
      callbacks.append(
Hongkun Yu's avatar
Hongkun Yu committed
141
142
          tf.keras.callbacks.ModelCheckpoint(
              ckpt_full_path, save_weights_only=True))
143
144
145
146
  return callbacks


def build_stats(history, eval_output, callbacks):
147
148
149
150
151
152
153
  """Normalizes and returns dictionary of stats.

  Args:
    history: Results of the training step. Supports both categorical_accuracy
      and sparse_categorical_accuracy.
    eval_output: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
154
155
    callbacks: a list of callbacks which might include a time history callback
      used during keras.fit.
156
157
158
159
160
161

  Returns:
    Dictionary of normalized results.
  """
  stats = {}
  if eval_output:
162
163
    stats['accuracy_top_1'] = float(eval_output[1])
    stats['eval_loss'] = float(eval_output[0])
164
165
166
  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
167
    stats['loss'] = float(train_hist['loss'][-1])
168
169
    # Gets top_1 training accuracy.
    if 'categorical_accuracy' in train_hist:
170
      stats[TRAIN_TOP_1] = float(train_hist['categorical_accuracy'][-1])
171
    elif 'sparse_categorical_accuracy' in train_hist:
172
      stats[TRAIN_TOP_1] = float(train_hist['sparse_categorical_accuracy'][-1])
Allen Wang's avatar
Allen Wang committed
173
174
    elif 'accuracy' in train_hist:
      stats[TRAIN_TOP_1] = float(train_hist['accuracy'][-1])
175

176
177
178
179
180
181
182
183
184
  if not callbacks:
    return stats

  # Look for the time history callback which was used during keras.fit
  for callback in callbacks:
    if isinstance(callback, keras_utils.TimeHistory):
      timestamp_log = callback.timestamp_log
      stats['step_timestamp_log'] = timestamp_log
      stats['train_finish_time'] = callback.train_finish_time
185
186
187
      if callback.epoch_runtime_log:
        stats['avg_exp_per_second'] = callback.average_examples_per_second

188
189
190
  return stats


191
def define_keras_flags(model=False,
Hongkun Yu's avatar
Hongkun Yu committed
192
193
                       optimizer=False,
                       pretrained_filepath=False):
194
  """Define flags for Keras models."""
Hongkun Yu's avatar
Hongkun Yu committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
  flags_core.define_base(
      clean=True,
      num_gpu=True,
      run_eagerly=True,
      train_epochs=True,
      epochs_between_evals=True,
      distribution_strategy=True)
  flags_core.define_performance(
      num_parallel_calls=False,
      synthetic_data=True,
      dtype=True,
      all_reduce_alg=True,
      num_packs=True,
      tf_gpu_thread_mode=True,
      datasets_num_private_threads=True,
      loss_scale=True,
      fp16_implementation=True,
      tf_data_experimental_slack=True,
      enable_xla=True,
      training_dataset_cache=True)
215
216
  flags_core.define_image()
  flags_core.define_benchmark()
217
  flags_core.define_distribution()
218
  flags.adopt_module_key_flags(flags_core)
219

Shining Sun's avatar
Shining Sun committed
220
  flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
221
  flags.DEFINE_boolean(name='skip_eval', default=False, help='Skip evaluation?')
222
223
224
  # TODO(b/135607288): Remove this flag once we understand the root cause of
  # slowdown when setting the learning phase in Keras backend.
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
225
226
      name='set_learning_phase_to_train',
      default=True,
227
228
      help='If skip eval, also set Keras learning phase to 1 (training).')
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
229
230
      name='explicit_gpu_placement',
      default=False,
231
232
      help='If not using distribution strategy, explicitly set device scope '
      'for the Keras training loop.')
233
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
      name='use_trivial_model',
      default=False,
      help='Whether to use a trivial Keras model.')
  flags.DEFINE_boolean(
      name='report_accuracy_metrics',
      default=True,
      help='Report metrics during training and evaluation.')
  flags.DEFINE_boolean(
      name='use_tensor_lr',
      default=True,
      help='Use learning rate tensor instead of a callback.')
  flags.DEFINE_boolean(
      name='enable_tensorboard',
      default=False,
248
      help='Whether to enable Tensorboard callback.')
Hongkun Yu's avatar
Hongkun Yu committed
249
  flags.DEFINE_string(
Hongkun Yu's avatar
Hongkun Yu committed
250
251
      name='profile_steps',
      default=None,
Hongkun Yu's avatar
Hongkun Yu committed
252
253
254
255
256
257
      help='Save profiling data to model dir at given range of global steps. The '
      'value must be a comma separated pair of positive integers, specifying '
      'the first and last step to profile. For example, "--profile_steps=2,4" '
      'triggers the profiler to process 3 steps, starting from the 2nd step. '
      'Note that profiler has a non-trivial performance overhead, and the '
      'output file can be gigantic if profiling many steps.')
Shining Sun's avatar
Shining Sun committed
258
  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
259
260
      name='train_steps',
      default=None,
261
      help='The number of steps to run for training. If it is larger than '
262
263
      '# batches per epoch, then use # batches per epoch. This flag will be '
      'ignored if train_epochs is set to be larger than 1. ')
264
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
265
266
      name='batchnorm_spatial_persistent',
      default=True,
267
      help='Enable the spacial persistent mode for CuDNN batch norm kernel.')
268
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
269
270
      name='enable_get_next_as_optional',
      default=False,
271
      help='Enable get_next_as_optional behavior in DistributedIterator.')
Hongkun Yu's avatar
Hongkun Yu committed
272
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
273
274
      name='enable_checkpoint_and_export',
      default=False,
Hongkun Yu's avatar
Hongkun Yu committed
275
      help='Whether to enable a checkpoint callback and export the savedmodel.')
Hongkun Yu's avatar
Hongkun Yu committed
276
  flags.DEFINE_string(name='tpu', default='', help='TPU address to connect to.')
Jing Li's avatar
Jing Li committed
277
  flags.DEFINE_integer(
278
      name='steps_per_loop',
279
      default=None,
280
      help='Number of steps per training loop. Only training step happens '
Jing Li's avatar
Jing Li committed
281
282
      'inside the loop. Callbacks will not be called inside. Will be capped at '
      'steps per epoch.')
283
284
285
286
287
288
  flags.DEFINE_boolean(
      name='use_tf_while_loop',
      default=True,
      help='Whether to build a tf.while_loop inside the training loop on the '
      'host. Setting it to True is critical to have peak performance on '
      'TPU.')
Shining Sun's avatar
Shining Sun committed
289

290
291
292
293
  if model:
    flags.DEFINE_string('model', 'resnet50_v1.5',
                        'Name of model preset. (mobilenet, resnet50_v1.5)')
  if optimizer:
Hongkun Yu's avatar
Hongkun Yu committed
294
295
296
    flags.DEFINE_string(
        'optimizer', 'resnet50_default', 'Name of optimizer preset. '
        '(mobilenet_default, resnet50_default)')
Jaehong Kim's avatar
Jaehong Kim committed
297
    # TODO(kimjaehong): Replace as general hyper-params not only for mobilenet.
Hongkun Yu's avatar
Hongkun Yu committed
298
299
300
301
    flags.DEFINE_float(
        'initial_learning_rate_per_sample', 0.00007,
        'Initial value of learning rate per sample for '
        'mobilenet_default.')
Jaehong Kim's avatar
Jaehong Kim committed
302
303
304
305
    flags.DEFINE_float('lr_decay_factor', 0.94,
                       'Learning rate decay factor for mobilenet_default.')
    flags.DEFINE_float('num_epochs_per_decay', 2.5,
                       'Number of epochs per decay for mobilenet_default.')
306
  if pretrained_filepath:
Hongkun Yu's avatar
Hongkun Yu committed
307
    flags.DEFINE_string('pretrained_filepath', '', 'Pretrained file path.')
308

309

Allen Wang's avatar
Allen Wang committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
def get_synth_data(height, width, num_channels, num_classes, dtype):
  """Creates a set of synthetic random data.

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.

  Returns:
    A tuple of tensors representing the inputs and labels.

  """
  # Synthetic input should be within [0, 255].
  inputs = tf.random.truncated_normal([height, width, num_channels],
                                      dtype=dtype,
                                      mean=127,
                                      stddev=60,
                                      name='synthetic_inputs')
  labels = tf.random.uniform([1],
                             minval=0,
                             maxval=num_classes - 1,
                             dtype=tf.int32,
                             name='synthetic_labels')
  return inputs, labels


339
340
def define_pruning_flags():
  """Define flags for pruning methods."""
Hongkun Yu's avatar
Hongkun Yu committed
341
342
343
  flags.DEFINE_string(
      'pruning_method', None, 'Pruning method.'
      'None (no pruning) or polynomial_decay.')
344
345
346
347
  flags.DEFINE_float('pruning_initial_sparsity', 0.0,
                     'Initial sparsity for pruning.')
  flags.DEFINE_float('pruning_final_sparsity', 0.5,
                     'Final sparsity for pruning.')
Hongkun Yu's avatar
Hongkun Yu committed
348
349
350
  flags.DEFINE_integer('pruning_begin_step', 0, 'Begin step for pruning.')
  flags.DEFINE_integer('pruning_end_step', 100000, 'End step for pruning.')
  flags.DEFINE_integer('pruning_frequency', 100, 'Frequency for pruning.')
351
352


353
354
355
def define_clustering_flags():
  """Define flags for clustering methods."""
  flags.DEFINE_string('clustering_method', None,
356
                      'None (no clustering) or selective_clustering '
357
                      '(cluster last three Conv2D layers of the model).')
358

359

Hongkun Yu's avatar
Hongkun Yu committed
360
361
362
363
364
365
def get_synth_input_fn(height,
                       width,
                       num_channels,
                       num_classes,
                       dtype=tf.float32,
                       drop_remainder=True):
Shining Sun's avatar
Shining Sun committed
366
367
368
369
370
  """Returns an input function that returns a dataset with random data.

  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
Shining Sun's avatar
Shining Sun committed
371
  tuning the full input pipeline.
Shining Sun's avatar
Shining Sun committed
372
373
374
375
376
377
378
379

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.
380
381
    drop_remainder: A boolean indicates whether to drop the remainder of the
      batches. If True, the batch dimension will be static.
Shining Sun's avatar
Shining Sun committed
382
383
384
385
386

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
Hongkun Yu's avatar
Hongkun Yu committed
387

Shining Sun's avatar
Shining Sun committed
388
389
390
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
Hongkun Yu's avatar
Hongkun Yu committed
391
392
393
394
395
396
    inputs, labels = get_synth_data(
        height=height,
        width=width,
        num_channels=num_channels,
        num_classes=num_classes,
        dtype=dtype)
397
398
    # Cast to float32 for Keras model.
    labels = tf.cast(labels, dtype=tf.float32)
Shining Sun's avatar
Shining Sun committed
399
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
400
401

    # `drop_remainder` will make dataset produce outputs with known shapes.
402
    data = data.batch(batch_size, drop_remainder=drop_remainder)
403
    data = data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
Shining Sun's avatar
Shining Sun committed
404
405
406
    return data

  return input_fn
Shining Sun's avatar
Shining Sun committed
407
408


409
def set_cudnn_batchnorm_mode():
Toby Boyd's avatar
Toby Boyd committed
410
411
412
413
414
  """Set CuDNN batchnorm mode for better performance.

     Note: Spatial Persistent mode may lead to accuracy losses for certain
     models.
  """
415
416
417
  if FLAGS.batchnorm_spatial_persistent:
    os.environ['TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT'] = '1'
  else:
418
    os.environ.pop('TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT', None)