deeplab.py 7.19 KB
Newer Older
Zhenyu Tan's avatar
Zhenyu Tan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Layers for DeepLabV3."""

import tensorflow as tf


@tf.keras.utils.register_keras_serializable(package='keras_cv')
21
class SpatialPyramidPooling(tf.keras.layers.Layer):
Zhenyu Tan's avatar
Zhenyu Tan committed
22
23
24
25
26
27
28
29
30
31
32
  """Implements the Atrous Spatial Pyramid Pooling.

  Reference:
    [Rethinking Atrous Convolution for Semantic Image Segmentation](
      https://arxiv.org/pdf/1706.05587.pdf)
  """

  def __init__(
      self,
      output_channels,
      dilation_rates,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
33
      pool_kernel_size=None,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
34
      use_sync_bn=False,
Zhenyu Tan's avatar
Zhenyu Tan committed
35
      batchnorm_momentum=0.99,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
36
      batchnorm_epsilon=0.001,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
37
      activation='relu',
Zhenyu Tan's avatar
Zhenyu Tan committed
38
39
40
41
42
      dropout=0.5,
      kernel_initializer='glorot_uniform',
      kernel_regularizer=None,
      interpolation='bilinear',
      **kwargs):
43
    """Initializes `SpatialPyramidPooling`.
Zhenyu Tan's avatar
Zhenyu Tan committed
44

45
    Args:
46
      output_channels: Number of channels produced by SpatialPyramidPooling.
Zhenyu Tan's avatar
Zhenyu Tan committed
47
      dilation_rates: A list of integers for parallel dilated conv.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
48
49
50
      pool_kernel_size: A list of integers or None. If None, global average
        pooling is applied, otherwise an average pooling of pool_kernel_size
        is applied.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
51
      use_sync_bn: A bool, whether or not to use sync batch normalization.
Zhenyu Tan's avatar
Zhenyu Tan committed
52
53
      batchnorm_momentum: A float for the momentum in BatchNorm. Defaults to
        0.99.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
54
55
      batchnorm_epsilon: A float for the epsilon value in BatchNorm. Defaults to
        0.001.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
56
      activation: A `str` for type of activation to be used. Defaults to 'relu'.
Zhenyu Tan's avatar
Zhenyu Tan committed
57
58
59
60
61
62
63
64
      dropout: A float for the dropout rate before output. Defaults to 0.5.
      kernel_initializer: Kernel initializer for conv layers. Defaults to
        `glorot_uniform`.
      kernel_regularizer: Kernel regularizer for conv layers. Defaults to None.
      interpolation: The interpolation method for upsampling. Defaults to
        `bilinear`.
      **kwargs: Other keyword arguments for the layer.
    """
65
    super(SpatialPyramidPooling, self).__init__(**kwargs)
Zhenyu Tan's avatar
Zhenyu Tan committed
66
67
68

    self.output_channels = output_channels
    self.dilation_rates = dilation_rates
Abdullah Rashwan's avatar
Abdullah Rashwan committed
69
    self.use_sync_bn = use_sync_bn
Zhenyu Tan's avatar
Zhenyu Tan committed
70
    self.batchnorm_momentum = batchnorm_momentum
Abdullah Rashwan's avatar
Abdullah Rashwan committed
71
    self.batchnorm_epsilon = batchnorm_epsilon
Abdullah Rashwan's avatar
Abdullah Rashwan committed
72
    self.activation = activation
Zhenyu Tan's avatar
Zhenyu Tan committed
73
74
75
76
77
    self.dropout = dropout
    self.kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self.kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self.interpolation = interpolation
    self.input_spec = tf.keras.layers.InputSpec(ndim=4)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
    self.pool_kernel_size = pool_kernel_size
Zhenyu Tan's avatar
Zhenyu Tan committed
79
80
81
82
83
84
85
86

  def build(self, input_shape):
    height = input_shape[1]
    width = input_shape[2]
    channels = input_shape[3]

    self.aspp_layers = []

Abdullah Rashwan's avatar
Abdullah Rashwan committed
87
88
89
90
91
92
93
94
95
96
    if self.use_sync_bn:
      bn_op = tf.keras.layers.experimental.SyncBatchNormalization
    else:
      bn_op = tf.keras.layers.BatchNormalization

    if tf.keras.backend.image_data_format() == 'channels_last':
      bn_axis = -1
    else:
      bn_axis = 1

Zhenyu Tan's avatar
Zhenyu Tan committed
97
98
99
100
    conv_sequential = tf.keras.Sequential([
        tf.keras.layers.Conv2D(
            filters=self.output_channels, kernel_size=(1, 1),
            kernel_initializer=self.kernel_initializer,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
101
102
103
104
105
106
            kernel_regularizer=self.kernel_regularizer,
            use_bias=False),
        bn_op(
            axis=bn_axis,
            momentum=self.batchnorm_momentum,
            epsilon=self.batchnorm_epsilon),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
107
        tf.keras.layers.Activation(self.activation)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
108
    ])
Zhenyu Tan's avatar
Zhenyu Tan committed
109
110
111
112
113
114
115
116
117
    self.aspp_layers.append(conv_sequential)

    for dilation_rate in self.dilation_rates:
      conv_sequential = tf.keras.Sequential([
          tf.keras.layers.Conv2D(
              filters=self.output_channels, kernel_size=(3, 3),
              padding='same', kernel_regularizer=self.kernel_regularizer,
              kernel_initializer=self.kernel_initializer,
              dilation_rate=dilation_rate, use_bias=False),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
118
119
          bn_op(axis=bn_axis, momentum=self.batchnorm_momentum,
                epsilon=self.batchnorm_epsilon),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
120
          tf.keras.layers.Activation(self.activation)])
Zhenyu Tan's avatar
Zhenyu Tan committed
121
122
      self.aspp_layers.append(conv_sequential)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    if self.pool_kernel_size is None:
      pool_sequential = tf.keras.Sequential([
          tf.keras.layers.GlobalAveragePooling2D(),
          tf.keras.layers.Reshape((1, 1, channels))])
    else:
      pool_sequential = tf.keras.Sequential([
          tf.keras.layers.AveragePooling2D(self.pool_kernel_size)])

    pool_sequential.add(
        tf.keras.Sequential([
            tf.keras.layers.Conv2D(
                filters=self.output_channels,
                kernel_size=(1, 1),
                kernel_initializer=self.kernel_initializer,
                kernel_regularizer=self.kernel_regularizer,
                use_bias=False),
            bn_op(
                axis=bn_axis,
                momentum=self.batchnorm_momentum,
                epsilon=self.batchnorm_epsilon),
            tf.keras.layers.Activation(self.activation),
            tf.keras.layers.experimental.preprocessing.Resizing(
                height, width, interpolation=self.interpolation)
        ]))

Zhenyu Tan's avatar
Zhenyu Tan committed
148
149
150
151
152
153
    self.aspp_layers.append(pool_sequential)

    self.projection = tf.keras.Sequential([
        tf.keras.layers.Conv2D(
            filters=self.output_channels, kernel_size=(1, 1),
            kernel_initializer=self.kernel_initializer,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
154
155
156
157
158
159
            kernel_regularizer=self.kernel_regularizer,
            use_bias=False),
        bn_op(
            axis=bn_axis,
            momentum=self.batchnorm_momentum,
            epsilon=self.batchnorm_epsilon),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
160
        tf.keras.layers.Activation(self.activation),
Zhenyu Tan's avatar
Zhenyu Tan committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        tf.keras.layers.Dropout(rate=self.dropout)])

  def call(self, inputs, training=None):
    if training is None:
      training = tf.keras.backend.learning_phase()
    result = []
    for layer in self.aspp_layers:
      result.append(layer(inputs, training=training))
    result = tf.concat(result, axis=-1)
    result = self.projection(result, training=training)
    return result

  def get_config(self):
    config = {
        'output_channels': self.output_channels,
        'dilation_rates': self.dilation_rates,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
177
        'pool_kernel_size': self.pool_kernel_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
178
        'use_sync_bn': self.use_sync_bn,
Zhenyu Tan's avatar
Zhenyu Tan committed
179
        'batchnorm_momentum': self.batchnorm_momentum,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
180
        'batchnorm_epsilon': self.batchnorm_epsilon,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
181
        'activation': self.activation,
Zhenyu Tan's avatar
Zhenyu Tan committed
182
183
184
185
186
187
188
        'dropout': self.dropout,
        'kernel_initializer': tf.keras.initializers.serialize(
            self.kernel_initializer),
        'kernel_regularizer': tf.keras.regularizers.serialize(
            self.kernel_regularizer),
        'interpolation': self.interpolation,
    }
189
    base_config = super(SpatialPyramidPooling, self).get_config()
Zhenyu Tan's avatar
Zhenyu Tan committed
190
    return dict(list(base_config.items()) + list(config.items()))