misc.py 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Misc for Transformer."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Toby Boyd's avatar
Toby Boyd committed
21
# pylint: disable=g-bad-import-order
22
from absl import flags
Toby Boyd's avatar
Toby Boyd committed
23
import tensorflow as tf
24

25
26
27
28
# TODO(tianlin) Import internal library. Remove this when some functions for
# different TF versions are fixed.
from tensorflow.python import tf2 as tf2_internal

29
30
from official.transformer.model import model_params
from official.utils.flags import core as flags_core
Toby Boyd's avatar
Toby Boyd committed
31
32
33
from official.utils.misc import keras_utils

FLAGS = flags.FLAGS
34
35

PARAMS_MAP = {
Toby Boyd's avatar
Toby Boyd committed
36
37
38
    'tiny': model_params.TINY_PARAMS,
    'base': model_params.BASE_PARAMS,
    'big': model_params.BIG_PARAMS,
39
40
41
}


42
43
44
45
46
def is_v2():
  """Returns whether it is v2."""
  return tf2_internal.enabled()


47
48
49
def get_model_params(param_set, num_gpus):
  """Gets predefined model params."""
  if num_gpus > 1:
Toby Boyd's avatar
Toby Boyd committed
50
    if param_set == 'big':
51
      return model_params.BIG_MULTI_GPU_PARAMS.copy()
Toby Boyd's avatar
Toby Boyd committed
52
    elif param_set == 'base':
53
54
      return model_params.BASE_MULTI_GPU_PARAMS.copy()
    else:
Toby Boyd's avatar
Toby Boyd committed
55
      raise ValueError('Not valid params: param_set={} num_gpus={}'.format(
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
          param_set, num_gpus))

  return PARAMS_MAP[param_set].copy()


def define_transformer_flags():
  """Add flags and flag validators for running transformer_main."""
  # Add common flags (data_dir, model_dir, train_epochs, etc.).
  flags_core.define_base()
  flags_core.define_performance(
      num_parallel_calls=True,
      inter_op=False,
      intra_op=False,
      synthetic_data=True,
      max_train_steps=False,
71
72
      dtype=True,
      loss_scale=True,
Toby Boyd's avatar
Toby Boyd committed
73
      all_reduce_alg=True,
74
      enable_xla=True,
Vinh Nguyen's avatar
Vinh Nguyen committed
75
76
      force_v2_in_keras_compile=True,
      fp16_implementation=True
77
  )
Toby Boyd's avatar
Toby Boyd committed
78
79
80
81
82
83
84
85
86
87
88

  # Additional performance flags
  # TODO(b/76028325): Remove when generic layout optimizer is ready.
  flags.DEFINE_boolean(
      name='enable_grappler_layout_optimizer',
      default=True,
      help='Enable Grappler layout optimizer. Currently Grappler can '
           'de-optimize fp16 graphs by forcing NCHW layout for all '
           'convolutions and batch normalizations, and this flag allows to '
           'disable it.'
  )
89
    
90
91
92
  flags_core.define_benchmark()
  flags_core.define_device(tpu=True)

Toby Boyd's avatar
Toby Boyd committed
93
  flags.DEFINE_integer(
Toby Boyd's avatar
Toby Boyd committed
94
      name='train_steps', short_name='ts', default=300000,
Toby Boyd's avatar
Toby Boyd committed
95
96
97
98
99
100
      help=flags_core.help_wrap('The number of steps used to train.'))
  flags.DEFINE_integer(
      name='steps_between_evals', short_name='sbe', default=1000,
      help=flags_core.help_wrap(
          'The Number of training steps to run between evaluations. This is '
          'used if --train_steps is defined.'))
101
102
103
  flags.DEFINE_boolean(
      name='enable_time_history', default=True,
      help='Whether to enable TimeHistory callback.')
Toby Boyd's avatar
Toby Boyd committed
104
105
106
  flags.DEFINE_boolean(
      name='enable_tensorboard', default=False,
      help='Whether to enable Tensorboard callback.')
107
108
109
  flags.DEFINE_boolean(
      name='enable_metrics_in_training', default=False,
      help='Whether to enable metrics during training.')
Toby Boyd's avatar
Toby Boyd committed
110
111
112
113
114
115
116
117
118
  flags.DEFINE_string(
      name='profile_steps', default=None,
      help='Save profiling data to model dir at given range of steps. The '
      'value must be a comma separated pair of positive integers, specifying '
      'the first and last step to profile. For example, "--profile_steps=2,4" '
      'triggers the profiler to process 3 steps, starting from the 2nd step. '
      'Note that profiler has a non-trivial performance overhead, and the '
      'output file can be gigantic if profiling many steps.')
  # Set flags from the flags_core module as 'key flags' so they're listed when
119
120
121
122
123
124
  # the '-h' flag is used. Without this line, the flags defined above are
  # only shown in the full `--helpful` help text.
  flags.adopt_module_key_flags(flags_core)

  # Add transformer-specific flags
  flags.DEFINE_enum(
Toby Boyd's avatar
Toby Boyd committed
125
      name='param_set', short_name='mp', default='big',
126
127
      enum_values=PARAMS_MAP.keys(),
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
128
129
130
131
132
133
          'Parameter set to use when creating and training the model. The '
          'parameters define the input shape (batch size and max length), '
          'model configuration (size of embedding, # of hidden layers, etc.), '
          'and various other settings. The big parameter set increases the '
          'default batch size, embedding/hidden size, and filter size. For a '
          'complete list of parameters, please see model/model_params.py.'))
134
135

  flags.DEFINE_bool(
136
      name='static_batch', short_name='sb', default=False,
137
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
138
139
140
141
142
143
          'Whether the batches in the dataset should have static shapes. In '
          'general, this setting should be False. Dynamic shapes allow the '
          'inputs to be grouped so that the number of padding tokens is '
          'minimized, and helps model training. In cases where the input shape '
          'must be static (e.g. running on TPU), this setting will be ignored '
          'and static batching will always be used.'))
144
145
146
147
148
149
  flags.DEFINE_integer(
      name='max_length', short_name='ml', default=256,
      help=flags_core.help_wrap(
          'Max sentence length for Transformer. Default is 256. Note: Usually '
          'it is more effective to use a smaller max length if static_batch is '
          'enabled, e.g. 64.'))
150
151
152

  # Flags for training with steps (may be used for debugging)
  flags.DEFINE_integer(
Toby Boyd's avatar
Toby Boyd committed
153
154
      name='validation_steps', short_name='vs', default=64,
      help=flags_core.help_wrap('The number of steps used in validation.'))
155
156
157

  # BLEU score computation
  flags.DEFINE_string(
Toby Boyd's avatar
Toby Boyd committed
158
      name='bleu_source', short_name='bls', default=None,
159
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
160
161
162
163
          'Path to source file containing text translate when calculating the '
          'official BLEU score. Both --bleu_source and --bleu_ref must be set. '
          'Use the flag --stop_threshold to stop the script based on the '
          'uncased BLEU score.'))
164
  flags.DEFINE_string(
Toby Boyd's avatar
Toby Boyd committed
165
      name='bleu_ref', short_name='blr', default=None,
166
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
167
168
169
170
          'Path to source file containing text translate when calculating the '
          'official BLEU score. Both --bleu_source and --bleu_ref must be set. '
          'Use the flag --stop_threshold to stop the script based on the '
          'uncased BLEU score.'))
171
  flags.DEFINE_string(
Toby Boyd's avatar
Toby Boyd committed
172
      name='vocab_file', short_name='vf', default=None,
173
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
174
175
176
          'Path to subtoken vocabulary file. If data_download.py was used to '
          'download and encode the training data, look in the data_dir to find '
          'the vocab file.'))
177
  flags.DEFINE_string(
Toby Boyd's avatar
Toby Boyd committed
178
179
      name='mode', default='train',
      help=flags_core.help_wrap('mode: train, eval, or predict'))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
180
181
182
183
184
185
186
187
188
189
190
  flags.DEFINE_bool(
      name='use_ctl',
      default=False,
      help=flags_core.help_wrap(
          'Whether the model runs with custom training loop.'))
  flags.DEFINE_bool(
      name='use_tpu_2vm_config',
      default=False,
      help=flags_core.help_wrap(
          'Whether the model runs in 2VM mode, Headless server and unit test '
          'all use 1VM config.'))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
  flags.DEFINE_integer(
      name='decode_batch_size',
      default=32,
      help=flags_core.help_wrap(
          'Global batch size used for Transformer autoregressive decoding on '
          'TPU.'))
  flags.DEFINE_integer(
      name='decode_max_length',
      default=97,
      help=flags_core.help_wrap(
          'Max sequence length of the decode/eval data. This is used by '
          'Transformer autoregressive decoding on TPU to have minimum '
          'paddings.'))
  flags.DEFINE_bool(
      name='padded_decode',
      default=False,
      help=flags_core.help_wrap(
          'Whether the autoregressive decoding runs with input data padded to '
          'the decode_max_length. For TPU/XLA-GPU runs, this flag has to be '
          'set due the static shape requirement. Although CPU/GPU could also '
          'use padded_decode, it has not been tested. In addition, this method '
          'will introduce unnecessary overheads which grow quadratically with '
          'the max sequence length.'))
214

Toby Boyd's avatar
Toby Boyd committed
215
216
  flags_core.set_defaults(data_dir='/tmp/translate_ende',
                          model_dir='/tmp/transformer_model',
217
218
219
220
221
                          batch_size=None,
                          train_epochs=10)

  # pylint: disable=unused-variable
  @flags.multi_flags_validator(
Toby Boyd's avatar
Toby Boyd committed
222
223
      ['mode', 'train_epochs'],
      message='--train_epochs must be defined in train mode')
224
  def _check_train_limits(flag_dict):
Toby Boyd's avatar
Toby Boyd committed
225
226
    if flag_dict['mode'] == 'train':
      return flag_dict['train_epochs'] is not None
227
228
229
    return True

  @flags.multi_flags_validator(
Toby Boyd's avatar
Toby Boyd committed
230
231
      ['bleu_source', 'bleu_ref'],
      message='Both or neither --bleu_source and --bleu_ref must be defined.')
232
  def _check_bleu_files(flags_dict):
Toby Boyd's avatar
Toby Boyd committed
233
234
    return (flags_dict['bleu_source'] is None) == (
        flags_dict['bleu_ref'] is None)
235
236

  @flags.multi_flags_validator(
Toby Boyd's avatar
Toby Boyd committed
237
238
239
      ['bleu_source', 'bleu_ref', 'vocab_file'],
      message='--vocab_file must be defined if --bleu_source and --bleu_ref '
              'are defined.')
240
  def _check_bleu_vocab_file(flags_dict):
Toby Boyd's avatar
Toby Boyd committed
241
242
    if flags_dict['bleu_source'] and flags_dict['bleu_ref']:
      return flags_dict['vocab_file'] is not None
243
244
245
    return True

  @flags.multi_flags_validator(
Toby Boyd's avatar
Toby Boyd committed
246
247
      ['export_dir', 'vocab_file'],
      message='--vocab_file must be defined if --export_dir is set.')
248
  def _check_export_vocab_file(flags_dict):
Toby Boyd's avatar
Toby Boyd committed
249
250
    if flags_dict['export_dir']:
      return flags_dict['vocab_file'] is not None
251
252
253
    return True
  # pylint: enable=unused-variable

Toby Boyd's avatar
Toby Boyd committed
254
255
256
257

def get_callbacks():
  """Returns common callbacks."""
  callbacks = []
258
259
260
  if FLAGS.enable_time_history:
    time_callback = keras_utils.TimeHistory(FLAGS.batch_size, FLAGS.log_steps)
    callbacks.append(time_callback)
Toby Boyd's avatar
Toby Boyd committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

  if FLAGS.enable_tensorboard:
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
        log_dir=FLAGS.model_dir)
    callbacks.append(tensorboard_callback)

  if FLAGS.profile_steps:
    profiler_callback = keras_utils.get_profiler_callback(
        FLAGS.model_dir,
        FLAGS.profile_steps,
        FLAGS.enable_tensorboard)
    callbacks.append(profiler_callback)

  return callbacks


def build_stats(history, callbacks):
  """Normalizes and returns dictionary of stats.

  Args:
    history: Results of the training step.
    callbacks: a list of callbacks which might include a time history callback
      used during keras.fit.

  Returns:
    Dictionary of normalized results.
  """
  stats = {}

  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
    stats['loss'] = train_hist['loss'][-1].item()

  if not callbacks:
    return stats

  # Look for the time history callback which was used during keras.fit
  for callback in callbacks:
    if isinstance(callback, keras_utils.TimeHistory):
      timestamp_log = callback.timestamp_log
      stats['step_timestamp_log'] = timestamp_log
      stats['train_finish_time'] = callback.train_finish_time
      if len(timestamp_log) > 1:
        stats['avg_exp_per_second'] = (
            callback.batch_size * callback.log_steps *
            (len(callback.timestamp_log)-1) /
            (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))
  return stats