pretrain_dataloader_test.py 5.3 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.nlp.data.pretrain_dataloader."""
import itertools
import os

from absl.testing import parameterized
import numpy as np
import tensorflow as tf

from official.nlp.data import pretrain_dataloader


Hongkun Yu's avatar
Hongkun Yu committed
27
28
29
30
31
32
def _create_fake_dataset(output_path,
                         seq_length,
                         max_predictions_per_seq,
                         use_position_id,
                         use_next_sentence_label,
                         use_v2_feature_names=False):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
  """Creates a fake dataset."""
  writer = tf.io.TFRecordWriter(output_path)

  def create_int_feature(values):
    f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
    return f

  def create_float_feature(values):
    f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
    return f

  for _ in range(100):
    features = {}
    input_ids = np.random.randint(100, size=(seq_length))
    features["input_mask"] = create_int_feature(np.ones_like(input_ids))
Hongkun Yu's avatar
Hongkun Yu committed
48
49
50
51
52
53
    if use_v2_feature_names:
      features["input_word_ids"] = create_int_feature(input_ids)
      features["input_type_ids"] = create_int_feature(np.ones_like(input_ids))
    else:
      features["input_ids"] = create_int_feature(input_ids)
      features["segment_ids"] = create_int_feature(np.ones_like(input_ids))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

    features["masked_lm_positions"] = create_int_feature(
        np.random.randint(100, size=(max_predictions_per_seq)))
    features["masked_lm_ids"] = create_int_feature(
        np.random.randint(100, size=(max_predictions_per_seq)))
    features["masked_lm_weights"] = create_float_feature(
        [1.0] * max_predictions_per_seq)

    if use_next_sentence_label:
      features["next_sentence_labels"] = create_int_feature([1])

    if use_position_id:
      features["position_ids"] = create_int_feature(range(0, seq_length))

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


class BertPretrainDataTest(tf.test.TestCase, parameterized.TestCase):

  @parameterized.parameters(itertools.product(
      (False, True),
      (False, True),
  ))
  def test_load_data(self, use_next_sentence_label, use_position_id):
    train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
    seq_length = 128
    max_predictions_per_seq = 20
    _create_fake_dataset(
        train_data_path,
        seq_length,
        max_predictions_per_seq,
        use_next_sentence_label=use_next_sentence_label,
        use_position_id=use_position_id)
    data_config = pretrain_dataloader.BertPretrainDataConfig(
        input_path=train_data_path,
        max_predictions_per_seq=max_predictions_per_seq,
        seq_length=seq_length,
        global_batch_size=10,
        is_training=True,
        use_next_sentence_label=use_next_sentence_label,
        use_position_id=use_position_id)

    dataset = pretrain_dataloader.BertPretrainDataLoader(data_config).load()
    features = next(iter(dataset))
    self.assertLen(features,
                   6 + int(use_next_sentence_label) + int(use_position_id))
    self.assertIn("input_word_ids", features)
    self.assertIn("input_mask", features)
    self.assertIn("input_type_ids", features)
    self.assertIn("masked_lm_positions", features)
    self.assertIn("masked_lm_ids", features)
    self.assertIn("masked_lm_weights", features)

    self.assertEqual("next_sentence_labels" in features,
                     use_next_sentence_label)
    self.assertEqual("position_ids" in features, use_position_id)

Hongkun Yu's avatar
Hongkun Yu committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
  def test_v2_feature_names(self):
    train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
    seq_length = 128
    max_predictions_per_seq = 20
    _create_fake_dataset(
        train_data_path,
        seq_length,
        max_predictions_per_seq,
        use_next_sentence_label=True,
        use_position_id=False,
        use_v2_feature_names=True)
    data_config = pretrain_dataloader.BertPretrainDataConfig(
        input_path=train_data_path,
        max_predictions_per_seq=max_predictions_per_seq,
        seq_length=seq_length,
        global_batch_size=10,
        is_training=True,
        use_next_sentence_label=True,
        use_position_id=False,
        use_v2_feature_names=True)

    dataset = pretrain_dataloader.BertPretrainDataLoader(data_config).load()
    features = next(iter(dataset))
    self.assertIn("input_word_ids", features)
    self.assertIn("input_mask", features)
    self.assertIn("input_type_ids", features)
    self.assertIn("masked_lm_positions", features)
    self.assertIn("masked_lm_ids", features)
    self.assertIn("masked_lm_weights", features)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
143
144
145

if __name__ == "__main__":
  tf.test.main()