exporter_test.py 47.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for object_detection.export_inference_graph."""
import os
import numpy as np
19
import six
20
import tensorflow as tf
21
from google.protobuf import text_format
22
23
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
24
from object_detection import exporter
25
from object_detection.builders import graph_rewriter_builder
26
27
from object_detection.builders import model_builder
from object_detection.core import model
28
from object_detection.protos import graph_rewriter_pb2
29
from object_detection.protos import pipeline_pb2
30
from object_detection.utils import ops
31

32
33
34
35
36
if six.PY2:
  import mock  # pylint: disable=g-import-not-at-top
else:
  from unittest import mock  # pylint: disable=g-import-not-at-top

Vivek Rathod's avatar
Vivek Rathod committed
37
38
slim = tf.contrib.slim

39
40
41

class FakeModel(model.DetectionModel):

42
43
  def __init__(self, add_detection_keypoints=False, add_detection_masks=False):
    self._add_detection_keypoints = add_detection_keypoints
44
45
    self._add_detection_masks = add_detection_masks

46
  def preprocess(self, inputs):
47
48
    true_image_shapes = []  # Doesn't matter for the fake model.
    return tf.identity(inputs), true_image_shapes
49

50
  def predict(self, preprocessed_inputs, true_image_shapes):
51
    return {'image': tf.layers.conv2d(preprocessed_inputs, 3, 1)}
52

53
  def postprocess(self, prediction_dict, true_image_shapes):
54
    with tf.control_dependencies(prediction_dict.values()):
55
      postprocessed_tensors = {
56
57
58
59
60
61
62
63
64
          'detection_boxes': tf.constant([[[0.0, 0.0, 0.5, 0.5],
                                           [0.5, 0.5, 0.8, 0.8]],
                                          [[0.5, 0.5, 1.0, 1.0],
                                           [0.0, 0.0, 0.0, 0.0]]], tf.float32),
          'detection_scores': tf.constant([[0.7, 0.6],
                                           [0.9, 0.0]], tf.float32),
          'detection_classes': tf.constant([[0, 1],
                                            [1, 0]], tf.float32),
          'num_detections': tf.constant([2, 1], tf.float32)
65
      }
66
67
68
      if self._add_detection_keypoints:
        postprocessed_tensors['detection_keypoints'] = tf.constant(
            np.arange(48).reshape([2, 2, 6, 2]), tf.float32)
69
70
      if self._add_detection_masks:
        postprocessed_tensors['detection_masks'] = tf.constant(
71
            np.arange(64).reshape([2, 2, 4, 4]), tf.float32)
72
    return postprocessed_tensors
73

74
  def restore_map(self, checkpoint_path, fine_tune_checkpoint_type):
75
76
    pass

77
  def loss(self, prediction_dict, true_image_shapes):
78
79
    pass

80
81
82
83
84
85
  def regularization_losses(self):
    pass

  def updates(self):
    pass

86
87
88

class ExportInferenceGraphTest(tf.test.TestCase):

89
90
91
92
  def _save_checkpoint_from_mock_model(self,
                                       checkpoint_path,
                                       use_moving_averages,
                                       enable_quantization=False):
93
94
    g = tf.Graph()
    with g.as_default():
95
      mock_model = FakeModel()
96
      preprocessed_inputs, true_image_shapes = mock_model.preprocess(
97
          tf.placeholder(tf.float32, shape=[None, None, None, 3]))
98
99
      predictions = mock_model.predict(preprocessed_inputs, true_image_shapes)
      mock_model.postprocess(predictions, true_image_shapes)
100
101
      if use_moving_averages:
        tf.train.ExponentialMovingAverage(0.0).apply()
102
103
104
105
106
107
108
      tf.train.get_or_create_global_step()
      if enable_quantization:
        graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
        graph_rewriter_config.quantization.delay = 500000
        graph_rewriter_fn = graph_rewriter_builder.build(
            graph_rewriter_config, is_training=False)
        graph_rewriter_fn()
109
110
111
112
113
114
      saver = tf.train.Saver()
      init = tf.global_variables_initializer()
      with self.test_session() as sess:
        sess.run(init)
        saver.save(sess, checkpoint_path)

115
  def _load_inference_graph(self, inference_graph_path, is_binary=True):
116
117
118
119
    od_graph = tf.Graph()
    with od_graph.as_default():
      od_graph_def = tf.GraphDef()
      with tf.gfile.GFile(inference_graph_path) as fid:
120
121
122
123
        if is_binary:
          od_graph_def.ParseFromString(fid.read())
        else:
          text_format.Parse(fid.read(), od_graph_def)
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        tf.import_graph_def(od_graph_def, name='')
    return od_graph

  def _create_tf_example(self, image_array):
    with self.test_session():
      encoded_image = tf.image.encode_jpeg(tf.constant(image_array)).eval()
    def _bytes_feature(value):
      return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': _bytes_feature(encoded_image),
        'image/format': _bytes_feature('jpg'),
        'image/source_id': _bytes_feature('image_id')
    })).SerializeToString()
    return example

  def test_export_graph_with_image_tensor_input(self):
140
141
142
143
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=False)
144
145
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
146
      mock_builder.return_value = FakeModel()
147
      output_directory = os.path.join(tmp_dir, 'output')
148
149
150
151
152
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
153
154
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
Vivek Rathod's avatar
Vivek Rathod committed
155
156
157
      self.assertTrue(os.path.exists(os.path.join(
          output_directory, 'saved_model', 'saved_model.pb')))

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
  def test_write_inference_graph(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=False)
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel()
      output_directory = os.path.join(tmp_dir, 'output')
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory,
          write_inference_graph=True)
      self.assertTrue(os.path.exists(os.path.join(
          output_directory, 'inference_graph.pbtxt')))

Vivek Rathod's avatar
Vivek Rathod committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
  def test_export_graph_with_fixed_size_image_tensor_input(self):
    input_shape = [1, 320, 320, 3]

    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(
        trained_checkpoint_prefix, use_moving_averages=False)
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel()
      output_directory = os.path.join(tmp_dir, 'output')
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory,
          input_shape=input_shape)
      saved_model_path = os.path.join(output_directory, 'saved_model')
      self.assertTrue(
          os.path.exists(os.path.join(saved_model_path, 'saved_model.pb')))

    with tf.Graph().as_default() as od_graph:
      with self.test_session(graph=od_graph) as sess:
        meta_graph = tf.saved_model.loader.load(
            sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
        signature = meta_graph.signature_def['serving_default']
        input_tensor_name = signature.inputs['inputs'].name
        image_tensor = od_graph.get_tensor_by_name(input_tensor_name)
        self.assertSequenceEqual(image_tensor.get_shape().as_list(),
                                 input_shape)
210
211

  def test_export_graph_with_tf_example_input(self):
212
213
214
215
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=False)
216
217
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
218
      mock_builder.return_value = FakeModel()
219
      output_directory = os.path.join(tmp_dir, 'output')
220
221
222
223
224
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='tf_example',
          pipeline_config=pipeline_config,
225
226
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
Vivek Rathod's avatar
Vivek Rathod committed
227
228
      self.assertTrue(os.path.exists(os.path.join(
          output_directory, 'saved_model', 'saved_model.pb')))
229

230
  def test_export_graph_with_encoded_image_string_input(self):
231
232
233
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
234
235
236
                                          use_moving_averages=False)
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
237
      mock_builder.return_value = FakeModel()
238
      output_directory = os.path.join(tmp_dir, 'output')
239
240
241
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
242
          input_type='encoded_image_string_tensor',
243
          pipeline_config=pipeline_config,
244
245
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
Vivek Rathod's avatar
Vivek Rathod committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
      self.assertTrue(os.path.exists(os.path.join(
          output_directory, 'saved_model', 'saved_model.pb')))

  def _get_variables_in_checkpoint(self, checkpoint_file):
    return set([
        var_name
        for var_name, _ in tf.train.list_variables(checkpoint_file)])

  def test_replace_variable_values_with_moving_averages(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    new_checkpoint_prefix = os.path.join(tmp_dir, 'new.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    graph = tf.Graph()
    with graph.as_default():
      fake_model = FakeModel()
263
      preprocessed_inputs, true_image_shapes = fake_model.preprocess(
Vivek Rathod's avatar
Vivek Rathod committed
264
          tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3]))
265
266
      predictions = fake_model.predict(preprocessed_inputs, true_image_shapes)
      fake_model.postprocess(predictions, true_image_shapes)
Vivek Rathod's avatar
Vivek Rathod committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
      exporter.replace_variable_values_with_moving_averages(
          graph, trained_checkpoint_prefix, new_checkpoint_prefix)

    expected_variables = set(['conv2d/bias', 'conv2d/kernel'])
    variables_in_old_ckpt = self._get_variables_in_checkpoint(
        trained_checkpoint_prefix)
    self.assertIn('conv2d/bias/ExponentialMovingAverage',
                  variables_in_old_ckpt)
    self.assertIn('conv2d/kernel/ExponentialMovingAverage',
                  variables_in_old_ckpt)
    variables_in_new_ckpt = self._get_variables_in_checkpoint(
        new_checkpoint_prefix)
    self.assertTrue(expected_variables.issubset(variables_in_new_ckpt))
    self.assertNotIn('conv2d/bias/ExponentialMovingAverage',
                     variables_in_new_ckpt)
    self.assertNotIn('conv2d/kernel/ExponentialMovingAverage',
                     variables_in_new_ckpt)
284

285
286
287
288
  def test_export_graph_with_moving_averages(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
289
                                          use_moving_averages=True)
290
    output_directory = os.path.join(tmp_dir, 'output')
291
292
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
293
      mock_builder.return_value = FakeModel()
294
295
296
297
298
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = True
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
299
300
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
Vivek Rathod's avatar
Vivek Rathod committed
301
302
303
304
305
306
      self.assertTrue(os.path.exists(os.path.join(
          output_directory, 'saved_model', 'saved_model.pb')))
    expected_variables = set(['conv2d/bias', 'conv2d/kernel', 'global_step'])
    actual_variables = set(
        [var_name for var_name, _ in tf.train.list_variables(output_directory)])
    self.assertTrue(expected_variables.issubset(actual_variables))
307

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
  def test_export_model_with_quantization_nodes(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(
        trained_checkpoint_prefix,
        use_moving_averages=False,
        enable_quantization=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'inference_graph.pbtxt')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel()
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      text_format.Merge(
          """graph_rewriter {
               quantization {
                 delay: 50000
                 activation_bits: 8
                 weight_bits: 8
               }
             }""", pipeline_config)
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory,
          write_inference_graph=True)
    self._load_inference_graph(inference_graph_path, is_binary=False)
    has_quant_nodes = False
    for v in tf.global_variables():
      if v.op.name.endswith('act_quant/min'):
        has_quant_nodes = True
        break
    self.assertTrue(has_quant_nodes)

344
  def test_export_model_with_all_output_nodes(self):
345
346
347
348
349
350
351
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
352
353
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
354
355
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
356
357
358
359
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
360
361
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
362
363
364
365
366
367
    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph):
      inference_graph.get_tensor_by_name('image_tensor:0')
      inference_graph.get_tensor_by_name('detection_boxes:0')
      inference_graph.get_tensor_by_name('detection_scores:0')
      inference_graph.get_tensor_by_name('detection_classes:0')
368
      inference_graph.get_tensor_by_name('detection_keypoints:0')
369
370
371
372
      inference_graph.get_tensor_by_name('detection_masks:0')
      inference_graph.get_tensor_by_name('num_detections:0')

  def test_export_model_with_detection_only_nodes(self):
373
374
375
376
377
378
379
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
380
381
382
383
384
385
386
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel(add_detection_masks=False)
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
387
388
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
389
390
391
392
393
394
395
396
    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph):
      inference_graph.get_tensor_by_name('image_tensor:0')
      inference_graph.get_tensor_by_name('detection_boxes:0')
      inference_graph.get_tensor_by_name('detection_scores:0')
      inference_graph.get_tensor_by_name('detection_classes:0')
      inference_graph.get_tensor_by_name('num_detections:0')
      with self.assertRaises(KeyError):
397
        inference_graph.get_tensor_by_name('detection_keypoints:0')
398
399
        inference_graph.get_tensor_by_name('detection_masks:0')

400
  def test_export_and_run_inference_with_image_tensor(self):
401
402
403
404
405
406
407
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
408
409
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
410
411
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
412
413
414
415
416
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
417
418
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
419
420
421
422
423
424
425

    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph) as sess:
      image_tensor = inference_graph.get_tensor_by_name('image_tensor:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
426
      keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
427
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
428
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
429
430
431
432
      (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
       num_detections_np) = sess.run(
           [boxes, scores, classes, keypoints, masks, num_detections],
           feed_dict={image_tensor: np.ones((2, 4, 4, 3)).astype(np.uint8)})
433
434
435
436
437
438
439
440
      self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                      [0.5, 0.5, 0.8, 0.8]],
                                     [[0.5, 0.5, 1.0, 1.0],
                                      [0.0, 0.0, 0.0, 0.0]]])
      self.assertAllClose(scores_np, [[0.7, 0.6],
                                      [0.9, 0.0]])
      self.assertAllClose(classes_np, [[1, 2],
                                       [2, 1]])
441
      self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
442
443
      self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
      self.assertAllClose(num_detections_np, [2, 1])
444

445
446
447
448
449
450
451
452
453
454
455
456
457
  def _create_encoded_image_string(self, image_array_np, encoding_format):
    od_graph = tf.Graph()
    with od_graph.as_default():
      if encoding_format == 'jpg':
        encoded_string = tf.image.encode_jpeg(image_array_np)
      elif encoding_format == 'png':
        encoded_string = tf.image.encode_png(image_array_np)
      else:
        raise ValueError('Supports only the following formats: `jpg`, `png`')
    with self.test_session(graph=od_graph):
      return encoded_string.eval()

  def test_export_and_run_inference_with_encoded_image_string_tensor(self):
458
459
460
461
462
463
464
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
465
466
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
467
468
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
469
470
471
472
473
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='encoded_image_string_tensor',
          pipeline_config=pipeline_config,
474
475
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
476
477
478
479
480
481
482
483
484
485
486
487

    inference_graph = self._load_inference_graph(inference_graph_path)
    jpg_image_str = self._create_encoded_image_string(
        np.ones((4, 4, 3)).astype(np.uint8), 'jpg')
    png_image_str = self._create_encoded_image_string(
        np.ones((4, 4, 3)).astype(np.uint8), 'png')
    with self.test_session(graph=inference_graph) as sess:
      image_str_tensor = inference_graph.get_tensor_by_name(
          'encoded_image_string_tensor:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
488
      keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
489
490
491
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
      for image_str in [jpg_image_str, png_image_str]:
492
        image_str_batch_np = np.hstack([image_str]* 2)
493
        (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
494
         num_detections_np) = sess.run(
495
             [boxes, scores, classes, keypoints, masks, num_detections],
496
497
498
499
500
501
502
503
504
             feed_dict={image_str_tensor: image_str_batch_np})
        self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.8, 0.8]],
                                       [[0.5, 0.5, 1.0, 1.0],
                                        [0.0, 0.0, 0.0, 0.0]]])
        self.assertAllClose(scores_np, [[0.7, 0.6],
                                        [0.9, 0.0]])
        self.assertAllClose(classes_np, [[1, 2],
                                         [2, 1]])
505
        self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
506
507
508
509
510
511
512
513
514
515
516
517
518
        self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
        self.assertAllClose(num_detections_np, [2, 1])

  def test_raise_runtime_error_on_images_with_different_sizes(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
519
520
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='encoded_image_string_tensor',
          pipeline_config=pipeline_config,
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)

    inference_graph = self._load_inference_graph(inference_graph_path)
    large_image = self._create_encoded_image_string(
        np.ones((4, 4, 3)).astype(np.uint8), 'jpg')
    small_image = self._create_encoded_image_string(
        np.ones((2, 2, 3)).astype(np.uint8), 'jpg')

    image_str_batch_np = np.hstack([large_image, small_image])
    with self.test_session(graph=inference_graph) as sess:
      image_str_tensor = inference_graph.get_tensor_by_name(
          'encoded_image_string_tensor:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
542
      keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
543
544
545
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
      with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
546
                                   'TensorArray.*shape'):
547
548
549
        sess.run(
            [boxes, scores, classes, keypoints, masks, num_detections],
            feed_dict={image_str_tensor: image_str_batch_np})
550

551
  def test_export_and_run_inference_with_tf_example(self):
552
553
554
555
556
557
558
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
559
560
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
561
562
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
563
564
565
566
567
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='tf_example',
          pipeline_config=pipeline_config,
568
569
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
570
571

    inference_graph = self._load_inference_graph(inference_graph_path)
572
573
    tf_example_np = np.expand_dims(self._create_tf_example(
        np.ones((4, 4, 3)).astype(np.uint8)), axis=0)
574
575
576
577
578
    with self.test_session(graph=inference_graph) as sess:
      tf_example = inference_graph.get_tensor_by_name('tf_example:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
579
      keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
580
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
581
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
582
583
584
585
      (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
       num_detections_np) = sess.run(
           [boxes, scores, classes, keypoints, masks, num_detections],
           feed_dict={tf_example: tf_example_np})
586
587
588
589
590
591
592
593
      self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                      [0.5, 0.5, 0.8, 0.8]],
                                     [[0.5, 0.5, 1.0, 1.0],
                                      [0.0, 0.0, 0.0, 0.0]]])
      self.assertAllClose(scores_np, [[0.7, 0.6],
                                      [0.9, 0.0]])
      self.assertAllClose(classes_np, [[1, 2],
                                       [2, 1]])
594
      self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
595
596
      self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
      self.assertAllClose(num_detections_np, [2, 1])
597

598
599
600
601
602
603
604
605
606
607
608
  def test_write_frozen_graph(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
    tf.gfile.MakeDirs(output_directory)
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
609
610
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
611
612
613
614
615
616
617
618
619
620
621
622
623
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      detection_model = model_builder.build(pipeline_config.model,
                                            is_training=False)
      outputs, _ = exporter._build_detection_graph(
          input_type='tf_example',
          detection_model=detection_model,
          input_shape=None,
          output_collection_name='inference_op',
          graph_hook_fn=None)
      output_node_names = ','.join(outputs.keys())
      saver = tf.train.Saver()
      input_saver_def = saver.as_saver_def()
624
      exporter.freeze_graph_with_def_protos(
625
626
627
628
629
630
          input_graph_def=tf.get_default_graph().as_graph_def(),
          input_saver_def=input_saver_def,
          input_checkpoint=trained_checkpoint_prefix,
          output_node_names=output_node_names,
          restore_op_name='save/restore_all',
          filename_tensor_name='save/Const:0',
631
          output_graph=inference_graph_path,
632
633
634
635
636
637
638
639
640
641
642
          clear_devices=True,
          initializer_nodes='')

    inference_graph = self._load_inference_graph(inference_graph_path)
    tf_example_np = np.expand_dims(self._create_tf_example(
        np.ones((4, 4, 3)).astype(np.uint8)), axis=0)
    with self.test_session(graph=inference_graph) as sess:
      tf_example = inference_graph.get_tensor_by_name('tf_example:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
643
      keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
644
645
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
646
647
648
649
      (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
       num_detections_np) = sess.run(
           [boxes, scores, classes, keypoints, masks, num_detections],
           feed_dict={tf_example: tf_example_np})
650
651
652
653
654
655
656
657
      self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                      [0.5, 0.5, 0.8, 0.8]],
                                     [[0.5, 0.5, 1.0, 1.0],
                                      [0.0, 0.0, 0.0, 0.0]]])
      self.assertAllClose(scores_np, [[0.7, 0.6],
                                      [0.9, 0.0]])
      self.assertAllClose(classes_np, [[1, 2],
                                       [2, 1]])
658
      self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
659
660
661
      self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
      self.assertAllClose(num_detections_np, [2, 1])

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
  def test_export_graph_saves_pipeline_file(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel()
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
      expected_pipeline_path = os.path.join(
          output_directory, 'pipeline.config')
      self.assertTrue(os.path.exists(expected_pipeline_path))

      written_pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      with tf.gfile.GFile(expected_pipeline_path, 'r') as f:
        proto_str = f.read()
        text_format.Merge(proto_str, written_pipeline_config)
        self.assertProtoEquals(pipeline_config, written_pipeline_config)

687
  def test_export_saved_model_and_run_inference(self):
688
689
690
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
691
                                          use_moving_averages=False)
692
693
    output_directory = os.path.join(tmp_dir, 'output')
    saved_model_path = os.path.join(output_directory, 'saved_model')
694
695
696

    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
697
698
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
699
700
701
702
703
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='tf_example',
          pipeline_config=pipeline_config,
704
705
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
706

707
708
    tf_example_np = np.hstack([self._create_tf_example(
        np.ones((4, 4, 3)).astype(np.uint8))] * 2)
709
710
    with tf.Graph().as_default() as od_graph:
      with self.test_session(graph=od_graph) as sess:
Vivek Rathod's avatar
Vivek Rathod committed
711
        meta_graph = tf.saved_model.loader.load(
712
            sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
Vivek Rathod's avatar
Vivek Rathod committed
713
714
715
716
717
718
719
720
721
722
723

        signature = meta_graph.signature_def['serving_default']
        input_tensor_name = signature.inputs['inputs'].name
        tf_example = od_graph.get_tensor_by_name(input_tensor_name)

        boxes = od_graph.get_tensor_by_name(
            signature.outputs['detection_boxes'].name)
        scores = od_graph.get_tensor_by_name(
            signature.outputs['detection_scores'].name)
        classes = od_graph.get_tensor_by_name(
            signature.outputs['detection_classes'].name)
724
725
        keypoints = od_graph.get_tensor_by_name(
            signature.outputs['detection_keypoints'].name)
Vivek Rathod's avatar
Vivek Rathod committed
726
727
728
729
730
        masks = od_graph.get_tensor_by_name(
            signature.outputs['detection_masks'].name)
        num_detections = od_graph.get_tensor_by_name(
            signature.outputs['num_detections'].name)

731
        (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
732
         num_detections_np) = sess.run(
733
             [boxes, scores, classes, keypoints, masks, num_detections],
734
735
736
737
738
739
740
741
742
             feed_dict={tf_example: tf_example_np})
        self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.8, 0.8]],
                                       [[0.5, 0.5, 1.0, 1.0],
                                        [0.0, 0.0, 0.0, 0.0]]])
        self.assertAllClose(scores_np, [[0.7, 0.6],
                                        [0.9, 0.0]])
        self.assertAllClose(classes_np, [[1, 2],
                                         [2, 1]])
743
        self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
744
745
        self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
        self.assertAllClose(num_detections_np, [2, 1])
746

747
748
749
750
751
752
753
754
755
756
  def test_write_saved_model(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=False)
    output_directory = os.path.join(tmp_dir, 'output')
    saved_model_path = os.path.join(output_directory, 'saved_model')
    tf.gfile.MakeDirs(output_directory)
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
757
758
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      detection_model = model_builder.build(pipeline_config.model,
                                            is_training=False)
      outputs, placeholder_tensor = exporter._build_detection_graph(
          input_type='tf_example',
          detection_model=detection_model,
          input_shape=None,
          output_collection_name='inference_op',
          graph_hook_fn=None)
      output_node_names = ','.join(outputs.keys())
      saver = tf.train.Saver()
      input_saver_def = saver.as_saver_def()
      frozen_graph_def = exporter.freeze_graph_with_def_protos(
          input_graph_def=tf.get_default_graph().as_graph_def(),
          input_saver_def=input_saver_def,
          input_checkpoint=trained_checkpoint_prefix,
          output_node_names=output_node_names,
          restore_op_name='save/restore_all',
          filename_tensor_name='save/Const:0',
779
          output_graph='',
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
          clear_devices=True,
          initializer_nodes='')
      exporter.write_saved_model(
          saved_model_path=saved_model_path,
          frozen_graph_def=frozen_graph_def,
          inputs=placeholder_tensor,
          outputs=outputs)

    tf_example_np = np.hstack([self._create_tf_example(
        np.ones((4, 4, 3)).astype(np.uint8))] * 2)
    with tf.Graph().as_default() as od_graph:
      with self.test_session(graph=od_graph) as sess:
        meta_graph = tf.saved_model.loader.load(
            sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)

        signature = meta_graph.signature_def['serving_default']
        input_tensor_name = signature.inputs['inputs'].name
        tf_example = od_graph.get_tensor_by_name(input_tensor_name)

        boxes = od_graph.get_tensor_by_name(
            signature.outputs['detection_boxes'].name)
        scores = od_graph.get_tensor_by_name(
            signature.outputs['detection_scores'].name)
        classes = od_graph.get_tensor_by_name(
            signature.outputs['detection_classes'].name)
805
806
        keypoints = od_graph.get_tensor_by_name(
            signature.outputs['detection_keypoints'].name)
807
808
809
810
811
        masks = od_graph.get_tensor_by_name(
            signature.outputs['detection_masks'].name)
        num_detections = od_graph.get_tensor_by_name(
            signature.outputs['num_detections'].name)

812
        (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
813
         num_detections_np) = sess.run(
814
             [boxes, scores, classes, keypoints, masks, num_detections],
815
816
817
818
819
820
821
822
823
             feed_dict={tf_example: tf_example_np})
        self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.8, 0.8]],
                                       [[0.5, 0.5, 1.0, 1.0],
                                        [0.0, 0.0, 0.0, 0.0]]])
        self.assertAllClose(scores_np, [[0.7, 0.6],
                                        [0.9, 0.0]])
        self.assertAllClose(classes_np, [[1, 2],
                                         [2, 1]])
824
        self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
825
826
827
        self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
        self.assertAllClose(num_detections_np, [2, 1])

828
829
830
831
832
833
834
835
836
837
838
  def test_export_checkpoint_and_run_inference(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=False)
    output_directory = os.path.join(tmp_dir, 'output')
    model_path = os.path.join(output_directory, 'model.ckpt')
    meta_graph_path = model_path + '.meta'

    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
839
840
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
841
842
843
844
845
846
847
848
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='tf_example',
          pipeline_config=pipeline_config,
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)

849
850
    tf_example_np = np.hstack([self._create_tf_example(
        np.ones((4, 4, 3)).astype(np.uint8))] * 2)
851
852
853
854
855
856
857
858
859
    with tf.Graph().as_default() as od_graph:
      with self.test_session(graph=od_graph) as sess:
        new_saver = tf.train.import_meta_graph(meta_graph_path)
        new_saver.restore(sess, model_path)

        tf_example = od_graph.get_tensor_by_name('tf_example:0')
        boxes = od_graph.get_tensor_by_name('detection_boxes:0')
        scores = od_graph.get_tensor_by_name('detection_scores:0')
        classes = od_graph.get_tensor_by_name('detection_classes:0')
860
        keypoints = od_graph.get_tensor_by_name('detection_keypoints:0')
861
862
        masks = od_graph.get_tensor_by_name('detection_masks:0')
        num_detections = od_graph.get_tensor_by_name('num_detections:0')
863
        (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
864
         num_detections_np) = sess.run(
865
             [boxes, scores, classes, keypoints, masks, num_detections],
866
867
868
869
870
871
872
873
874
             feed_dict={tf_example: tf_example_np})
        self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.8, 0.8]],
                                       [[0.5, 0.5, 1.0, 1.0],
                                        [0.0, 0.0, 0.0, 0.0]]])
        self.assertAllClose(scores_np, [[0.7, 0.6],
                                        [0.9, 0.0]])
        self.assertAllClose(classes_np, [[1, 2],
                                         [2, 1]])
875
        self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
876
877
878
879
880
881
882
883
884
885
886
887
888
889
        self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
        self.assertAllClose(num_detections_np, [2, 1])

  def test_write_graph_and_checkpoint(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=False)
    output_directory = os.path.join(tmp_dir, 'output')
    model_path = os.path.join(output_directory, 'model.ckpt')
    meta_graph_path = model_path + '.meta'
    tf.gfile.MakeDirs(output_directory)
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
890
891
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      detection_model = model_builder.build(pipeline_config.model,
                                            is_training=False)
      exporter._build_detection_graph(
          input_type='tf_example',
          detection_model=detection_model,
          input_shape=None,
          output_collection_name='inference_op',
          graph_hook_fn=None)
      saver = tf.train.Saver()
      input_saver_def = saver.as_saver_def()
      exporter.write_graph_and_checkpoint(
          inference_graph_def=tf.get_default_graph().as_graph_def(),
          model_path=model_path,
          input_saver_def=input_saver_def,
          trained_checkpoint_prefix=trained_checkpoint_prefix)

    tf_example_np = np.hstack([self._create_tf_example(
        np.ones((4, 4, 3)).astype(np.uint8))] * 2)
    with tf.Graph().as_default() as od_graph:
      with self.test_session(graph=od_graph) as sess:
        new_saver = tf.train.import_meta_graph(meta_graph_path)
        new_saver.restore(sess, model_path)

        tf_example = od_graph.get_tensor_by_name('tf_example:0')
        boxes = od_graph.get_tensor_by_name('detection_boxes:0')
        scores = od_graph.get_tensor_by_name('detection_scores:0')
        classes = od_graph.get_tensor_by_name('detection_classes:0')
921
        keypoints = od_graph.get_tensor_by_name('detection_keypoints:0')
922
923
        masks = od_graph.get_tensor_by_name('detection_masks:0')
        num_detections = od_graph.get_tensor_by_name('num_detections:0')
924
        (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
925
         num_detections_np) = sess.run(
926
             [boxes, scores, classes, keypoints, masks, num_detections],
927
928
929
930
931
932
933
934
935
             feed_dict={tf_example: tf_example_np})
        self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.8, 0.8]],
                                       [[0.5, 0.5, 1.0, 1.0],
                                        [0.0, 0.0, 0.0, 0.0]]])
        self.assertAllClose(scores_np, [[0.7, 0.6],
                                        [0.9, 0.0]])
        self.assertAllClose(classes_np, [[1, 2],
                                         [2, 1]])
936
        self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
937
938
        self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
        self.assertAllClose(num_detections_np, [2, 1])
939

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
  def test_rewrite_nn_resize_op(self):
    g = tf.Graph()
    with g.as_default():
      x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8))
      y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8))
      s = ops.nearest_neighbor_upsampling(x, 2)
      t = s + y
      exporter.rewrite_nn_resize_op()

    resize_op_found = False
    for op in g.get_operations():
      if op.type == 'ResizeNearestNeighbor':
        resize_op_found = True
        self.assertEqual(op.inputs[0], x)
        self.assertEqual(op.outputs[0].consumers()[0], t.op)
        break

    self.assertTrue(resize_op_found)

  def test_rewrite_nn_resize_op_quantized(self):
    g = tf.Graph()
    with g.as_default():
      x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8))
      x_conv = tf.contrib.slim.conv2d(x, 8, 1)
      y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8))
      s = ops.nearest_neighbor_upsampling(x_conv, 2)
      t = s + y

      graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
      graph_rewriter_config.quantization.delay = 500000
      graph_rewriter_fn = graph_rewriter_builder.build(
          graph_rewriter_config, is_training=False)
      graph_rewriter_fn()

      exporter.rewrite_nn_resize_op(is_quantized=True)

    resize_op_found = False
    for op in g.get_operations():
      if op.type == 'ResizeNearestNeighbor':
        resize_op_found = True
        self.assertEqual(op.inputs[0].op.type, 'FakeQuantWithMinMaxVars')
        self.assertEqual(op.outputs[0].consumers()[0], t.op)
        break

    self.assertTrue(resize_op_found)

986

987
988
if __name__ == '__main__':
  tf.test.main()