transformer.py 21 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines the Transformer model in TF 2.0.

Model paper: https://arxiv.org/pdf/1706.03762.pdf
Transformer model code source: https://github.com/tensorflow/tensor2tensor
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from official.transformer.model import model_utils
from official.transformer.utils.tokenizer import EOS_ID
from official.transformer.v2 import attention_layer
29
from official.transformer.v2 import beam_search
30
31
32
33
34
from official.transformer.v2 import embedding_layer
from official.transformer.v2 import ffn_layer
from official.transformer.v2 import metrics


Reed's avatar
Reed committed
35
36
37
38
39
# Disable the not-callable lint error, since it claims many objects are not
# callable when they actually are.
# pylint: disable=not-callable


40
41
42
43
44
45
46
47
48
49
def create_model(params, is_train):
  """Creates transformer model."""
  with tf.name_scope("model"):
    if is_train:
      inputs = tf.keras.layers.Input((None,), dtype="int64", name="inputs")
      targets = tf.keras.layers.Input((None,), dtype="int64", name="targets")
      internal_model = Transformer(params, name="transformer_v2")
      logits = internal_model([inputs, targets], training=is_train)
      vocab_size = params["vocab_size"]
      label_smoothing = params["label_smoothing"]
50
51
      if params["enable_metrics_in_training"]:
        logits = metrics.MetricLayer(vocab_size)([logits, targets])
52
      logits = tf.keras.layers.Lambda(lambda x: x, name="logits",
Reed's avatar
Reed committed
53
                                      dtype=tf.float32)(logits)
guptapriya's avatar
guptapriya committed
54
      model = tf.keras.Model([inputs, targets], logits)
55
      # TODO(reedwm): Can we do this loss in float16 instead of float32?
guptapriya's avatar
guptapriya committed
56
57
58
59
      loss = metrics.transformer_loss(
          logits, targets, label_smoothing, vocab_size)
      model.add_loss(loss)
      return model
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

    else:
      inputs = tf.keras.layers.Input((None,), dtype="int64", name="inputs")
      internal_model = Transformer(params, name="transformer_v2")
      ret = internal_model([inputs], training=is_train)
      outputs, scores = ret["outputs"], ret["scores"]
      return tf.keras.Model(inputs, [outputs, scores])


class Transformer(tf.keras.Model):
  """Transformer model with Keras.

  Implemented as described in: https://arxiv.org/pdf/1706.03762.pdf

  The Transformer model consists of an encoder and decoder. The input is an int
  sequence (or a batch of sequences). The encoder produces a continuous
  representation, and the decoder uses the encoder output to generate
  probabilities for the output sequence.
  """

  def __init__(self, params, name=None):
    """Initialize layers to build Transformer model.

    Args:
      params: hyperparameter object defining layer sizes, dropout values, etc.
      name: name of the model.
    """
    super(Transformer, self).__init__(name=name)
    self.params = params
    self.embedding_softmax_layer = embedding_layer.EmbeddingSharedWeights(
90
        params["vocab_size"], params["hidden_size"])
91
92
93
94
95
96
97
98
    self.encoder_stack = EncoderStack(params)
    self.decoder_stack = DecoderStack(params)

  def get_config(self):
    return {
        "params": self.params,
    }

99
  def call(self, inputs, training):
100
101
102
    """Calculate target logits or inferred target sequences.

    Args:
103
      inputs: input tensor list of size 1 or 2.
104
105
106
107
108
109
110
111
112
113
114
115
        First item, inputs: int tensor with shape [batch_size, input_length].
        Second item (optional), targets: None or int tensor with shape
          [batch_size, target_length].
      training: boolean, whether in training mode or not.

    Returns:
      If targets is defined, then return logits for each word in the target
      sequence. float tensor with shape [batch_size, target_length, vocab_size]
      If target is none, then generate output sequence one token at a time.
        returns a dictionary {
          outputs: [batch_size, decoded length]
          scores: [batch_size, float]}
116
      Even when float16 is used, the output tensor(s) are always float32.
117
    """
118
119
    if len(inputs) == 2:
      inputs, targets = inputs[0], inputs[1]
120
    else:
121
      inputs, targets = inputs[0], None
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    # Variance scaling is used here because it seems to work in many problems.
    # Other reasonable initializers may also work just as well.
    with tf.name_scope("Transformer"):
      # Calculate attention bias for encoder self-attention and decoder
      # multi-headed attention layers.
      attention_bias = model_utils.get_padding_bias(inputs)

      # Run the inputs through the encoder layer to map the symbol
      # representations to continuous representations.
      encoder_outputs = self.encode(inputs, attention_bias, training)
      # Generate output sequence if targets is None, or return logits if target
      # sequence is known.
      if targets is None:
        return self.predict(encoder_outputs, attention_bias, training)
      else:
        logits = self.decode(targets, encoder_outputs, attention_bias, training)
        return logits

  def encode(self, inputs, attention_bias, training):
    """Generate continuous representation for inputs.

    Args:
      inputs: int tensor with shape [batch_size, input_length].
      attention_bias: float tensor with shape [batch_size, 1, 1, input_length].
      training: boolean, whether in training mode or not.

    Returns:
      float tensor with shape [batch_size, input_length, hidden_size]
    """
    with tf.name_scope("encode"):
      # Prepare inputs to the layer stack by adding positional encodings and
      # applying dropout.
      embedded_inputs = self.embedding_softmax_layer(inputs)
156
      embedded_inputs = tf.cast(embedded_inputs, self.params["dtype"])
157
      inputs_padding = model_utils.get_padding(inputs)
158
      attention_bias = tf.cast(attention_bias, self.params["dtype"])
159
160
161
162
163

      with tf.name_scope("add_pos_encoding"):
        length = tf.shape(embedded_inputs)[1]
        pos_encoding = model_utils.get_position_encoding(
            length, self.params["hidden_size"])
164
        pos_encoding = tf.cast(pos_encoding, self.params["dtype"])
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        encoder_inputs = embedded_inputs + pos_encoding

      if training:
        encoder_inputs = tf.nn.dropout(
            encoder_inputs, rate=self.params["layer_postprocess_dropout"])

      return self.encoder_stack(
          encoder_inputs, attention_bias, inputs_padding, training=training)

  def decode(self, targets, encoder_outputs, attention_bias, training):
    """Generate logits for each value in the target sequence.

    Args:
      targets: target values for the output sequence. int tensor with shape
        [batch_size, target_length]
      encoder_outputs: continuous representation of input sequence. float tensor
        with shape [batch_size, input_length, hidden_size]
      attention_bias: float tensor with shape [batch_size, 1, 1, input_length]
      training: boolean, whether in training mode or not.

    Returns:
      float32 tensor with shape [batch_size, target_length, vocab_size]
    """
    with tf.name_scope("decode"):
      # Prepare inputs to decoder layers by shifting targets, adding positional
      # encoding and applying dropout.
      decoder_inputs = self.embedding_softmax_layer(targets)
192
193
      decoder_inputs = tf.cast(decoder_inputs, self.params['dtype'])
      attention_bias = tf.cast(attention_bias, self.params["dtype"])
194
195
196
197
198
199
      with tf.name_scope("shift_targets"):
        # Shift targets to the right, and remove the last element
        decoder_inputs = tf.pad(decoder_inputs,
                                [[0, 0], [1, 0], [0, 0]])[:, :-1, :]
      with tf.name_scope("add_pos_encoding"):
        length = tf.shape(decoder_inputs)[1]
200
        pos_encoding = model_utils.get_position_encoding(
201
            length, self.params["hidden_size"])
202
203
        pos_encoding = tf.cast(pos_encoding, self.params["dtype"])
        decoder_inputs += pos_encoding
204
205
206
207
208
209
      if training:
        decoder_inputs = tf.nn.dropout(
            decoder_inputs, rate=self.params["layer_postprocess_dropout"])

      # Run values
      decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(
210
          length, dtype=self.params['dtype'])
211
212
213
214
215
216
217
      outputs = self.decoder_stack(
          decoder_inputs,
          encoder_outputs,
          decoder_self_attention_bias,
          attention_bias,
          training=training)
      logits = self.embedding_softmax_layer(outputs, mode="linear")
218
      logits = tf.cast(logits, tf.float32)
219
220
221
222
223
224
225
      return logits

  def _get_symbols_to_logits_fn(self, max_decode_length, training):
    """Returns a decoding function that calculates logits of the next tokens."""

    timing_signal = model_utils.get_position_encoding(
        max_decode_length + 1, self.params["hidden_size"])
Reed's avatar
Reed committed
226
    timing_signal = tf.cast(timing_signal, self.params["dtype"])
227
    decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(
Reed's avatar
Reed committed
228
        max_decode_length, dtype=self.params["dtype"])
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

    def symbols_to_logits_fn(ids, i, cache):
      """Generate logits for next potential IDs.

      Args:
        ids: Current decoded sequences. int tensor with shape [batch_size *
          beam_size, i + 1]
        i: Loop index
        cache: dictionary of values storing the encoder output, encoder-decoder
          attention bias, and previous decoder attention values.

      Returns:
        Tuple of
          (logits with shape [batch_size * beam_size, vocab_size],
           updated cache values)
      """
      # Set decoder input to the last generated IDs
      decoder_input = ids[:, -1:]

      # Preprocess decoder input by getting embeddings and adding timing signal.
      decoder_input = self.embedding_softmax_layer(decoder_input)
      decoder_input += timing_signal[i:i + 1]

      self_attention_bias = decoder_self_attention_bias[:, :, i:i + 1, :i + 1]
      decoder_outputs = self.decoder_stack(
          decoder_input,
          cache.get("encoder_outputs"),
          self_attention_bias,
          cache.get("encoder_decoder_attention_bias"),
          training=training,
          cache=cache)
      logits = self.embedding_softmax_layer(decoder_outputs, mode="linear")
      logits = tf.squeeze(logits, axis=[1])
      return logits, cache

    return symbols_to_logits_fn

  def predict(self, encoder_outputs, encoder_decoder_attention_bias, training):
    """Return predicted sequence."""
    batch_size = tf.shape(encoder_outputs)[0]
    input_length = tf.shape(encoder_outputs)[1]
    max_decode_length = input_length + self.params["extra_decode_length"]
Reed's avatar
Reed committed
271
272
    encoder_decoder_attention_bias = tf.cast(encoder_decoder_attention_bias,
                                             self.params["dtype"])
273
274
275
276
277
278
279
280
281
282
283

    symbols_to_logits_fn = self._get_symbols_to_logits_fn(
        max_decode_length, training)

    # Create initial set of IDs that will be passed into symbols_to_logits_fn.
    initial_ids = tf.zeros([batch_size], dtype=tf.int32)

    # Create cache storing decoder attention values for each layer.
    # pylint: disable=g-complex-comprehension
    cache = {
        "layer_%d" % layer: {
Reed's avatar
Reed committed
284
285
286
287
            "k": tf.zeros([batch_size, 0, self.params["hidden_size"]],
                          dtype=self.params["dtype"]),
            "v": tf.zeros([batch_size, 0, self.params["hidden_size"]],
                          dtype=self.params["dtype"])
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        } for layer in range(self.params["num_hidden_layers"])
    }
    # pylint: enable=g-complex-comprehension

    # Add encoder output and attention bias to the cache.
    cache["encoder_outputs"] = encoder_outputs
    cache["encoder_decoder_attention_bias"] = encoder_decoder_attention_bias

    # Use beam search to find the top beam_size sequences and scores.
    decoded_ids, scores = beam_search.sequence_beam_search(
        symbols_to_logits_fn=symbols_to_logits_fn,
        initial_ids=initial_ids,
        initial_cache=cache,
        vocab_size=self.params["vocab_size"],
        beam_size=self.params["beam_size"],
        alpha=self.params["alpha"],
        max_decode_length=max_decode_length,
Reed's avatar
Reed committed
305
306
        eos_id=EOS_ID,
        dtype=self.params["dtype"])
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

    # Get the top sequence for each batch element
    top_decoded_ids = decoded_ids[:, 0, 1:]
    top_scores = scores[:, 0]

    return {"outputs": top_decoded_ids, "scores": top_scores}


class LayerNormalization(tf.keras.layers.Layer):
  """Applies layer normalization."""

  def __init__(self, hidden_size):
    super(LayerNormalization, self).__init__()
    self.hidden_size = hidden_size

  def build(self, input_shape):
    """Builds the layer."""
324
325
326
327
    # Passing experimental_autocast=False causes these variables to not be
    # automatically casted to fp16 when mixed precision is used. Since we use
    # float32 in call() for numeric stability, we do not want variables to be
    # casted to fp16.
328
329
330
331
    self.scale = self.add_weight(
        "layer_norm_scale",
        shape=[self.hidden_size],
        dtype="float32",
332
333
        initializer=tf.ones_initializer(),
        experimental_autocast=False)
334
335
336
337
    self.bias = self.add_weight(
        "layer_norm_bias",
        shape=[self.hidden_size],
        dtype="float32",
338
339
        initializer=tf.zeros_initializer(),
        experimental_autocast=False)
340
341
342
343
344
345
346
347
    super(LayerNormalization, self).build(input_shape)

  def get_config(self):
    return {
        "hidden_size": self.hidden_size,
    }

  def call(self, x, epsilon=1e-6):
348
349
350
    input_dtype = x.dtype
    if input_dtype == tf.float16:
      x = tf.cast(x, tf.float32)
351
352
353
    mean = tf.reduce_mean(x, axis=[-1], keepdims=True)
    variance = tf.reduce_mean(tf.square(x - mean), axis=[-1], keepdims=True)
    norm_x = (x - mean) * tf.math.rsqrt(variance + epsilon)
354
    return tf.cast(norm_x * self.scale + self.bias, input_dtype)
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556


class PrePostProcessingWrapper(tf.keras.layers.Layer):
  """Wrapper class that applies layer pre-processing and post-processing."""

  def __init__(self, layer, params):
    super(PrePostProcessingWrapper, self).__init__()
    self.layer = layer
    self.params = params
    self.postprocess_dropout = params["layer_postprocess_dropout"]

  def build(self, input_shape):
    # Create normalization layer
    self.layer_norm = LayerNormalization(self.params["hidden_size"])
    super(PrePostProcessingWrapper, self).build(input_shape)

  def get_config(self):
    return {
        "params": self.params,
    }

  def call(self, x, *args, **kwargs):
    """Calls wrapped layer with same parameters."""
    # Preprocessing: apply layer normalization
    training = kwargs["training"]

    y = self.layer_norm(x)

    # Get layer output
    y = self.layer(y, *args, **kwargs)

    # Postprocessing: apply dropout and residual connection
    if training:
      y = tf.nn.dropout(y, rate=self.postprocess_dropout)
    return x + y


class EncoderStack(tf.keras.layers.Layer):
  """Transformer encoder stack.

  The encoder stack is made up of N identical layers. Each layer is composed
  of the sublayers:
    1. Self-attention layer
    2. Feedforward network (which is 2 fully-connected layers)
  """

  def __init__(self, params):
    super(EncoderStack, self).__init__()
    self.params = params
    self.layers = []

  def build(self, input_shape):
    """Builds the encoder stack."""
    params = self.params
    for _ in range(params["num_hidden_layers"]):
      # Create sublayers for each layer.
      self_attention_layer = attention_layer.SelfAttention(
          params["hidden_size"], params["num_heads"],
          params["attention_dropout"])
      feed_forward_network = ffn_layer.FeedForwardNetwork(
          params["hidden_size"], params["filter_size"], params["relu_dropout"])

      self.layers.append([
          PrePostProcessingWrapper(self_attention_layer, params),
          PrePostProcessingWrapper(feed_forward_network, params)
      ])

    # Create final layer normalization layer.
    self.output_normalization = LayerNormalization(params["hidden_size"])
    super(EncoderStack, self).build(input_shape)

  def get_config(self):
    return {
        "params": self.params,
    }

  def call(self, encoder_inputs, attention_bias, inputs_padding, training):
    """Return the output of the encoder layer stacks.

    Args:
      encoder_inputs: tensor with shape [batch_size, input_length, hidden_size]
      attention_bias: bias for the encoder self-attention layer. [batch_size, 1,
        1, input_length]
      inputs_padding: tensor with shape [batch_size, input_length], inputs with
        zero paddings.
      training: boolean, whether in training mode or not.

    Returns:
      Output of encoder layer stack.
      float32 tensor with shape [batch_size, input_length, hidden_size]
    """
    for n, layer in enumerate(self.layers):
      # Run inputs through the sublayers.
      self_attention_layer = layer[0]
      feed_forward_network = layer[1]

      with tf.name_scope("layer_%d" % n):
        with tf.name_scope("self_attention"):
          encoder_inputs = self_attention_layer(
              encoder_inputs, attention_bias, training=training)
        with tf.name_scope("ffn"):
          encoder_inputs = feed_forward_network(
              encoder_inputs, training=training)

    return self.output_normalization(encoder_inputs)


class DecoderStack(tf.keras.layers.Layer):
  """Transformer decoder stack.

  Like the encoder stack, the decoder stack is made up of N identical layers.
  Each layer is composed of the sublayers:
    1. Self-attention layer
    2. Multi-headed attention layer combining encoder outputs with results from
       the previous self-attention layer.
    3. Feedforward network (2 fully-connected layers)
  """

  def __init__(self, params):
    super(DecoderStack, self).__init__()
    self.params = params
    self.layers = []

  def build(self, input_shape):
    """Builds the decoder stack."""
    params = self.params
    for _ in range(params["num_hidden_layers"]):
      self_attention_layer = attention_layer.SelfAttention(
          params["hidden_size"], params["num_heads"],
          params["attention_dropout"])
      enc_dec_attention_layer = attention_layer.Attention(
          params["hidden_size"], params["num_heads"],
          params["attention_dropout"])
      feed_forward_network = ffn_layer.FeedForwardNetwork(
          params["hidden_size"], params["filter_size"], params["relu_dropout"])

      self.layers.append([
          PrePostProcessingWrapper(self_attention_layer, params),
          PrePostProcessingWrapper(enc_dec_attention_layer, params),
          PrePostProcessingWrapper(feed_forward_network, params)
      ])
    self.output_normalization = LayerNormalization(params["hidden_size"])
    super(DecoderStack, self).build(input_shape)

  def get_config(self):
    return {
        "params": self.params,
    }

  def call(self,
           decoder_inputs,
           encoder_outputs,
           decoder_self_attention_bias,
           attention_bias,
           training,
           cache=None):
    """Return the output of the decoder layer stacks.

    Args:
      decoder_inputs: tensor with shape [batch_size, target_length, hidden_size]
      encoder_outputs: tensor with shape [batch_size, input_length, hidden_size]
      decoder_self_attention_bias: bias for decoder self-attention layer. [1, 1,
        target_len, target_length]
      attention_bias: bias for encoder-decoder attention layer. [batch_size, 1,
        1, input_length]
      training: boolean, whether in training mode or not.
      cache: (Used for fast decoding) A nested dictionary storing previous
        decoder self-attention values. The items are:
          {layer_n: {"k": tensor with shape [batch_size, i, key_channels],
                     "v": tensor with shape [batch_size, i, value_channels]},
                       ...}

    Returns:
      Output of decoder layer stack.
      float32 tensor with shape [batch_size, target_length, hidden_size]
    """
    for n, layer in enumerate(self.layers):
      self_attention_layer = layer[0]
      enc_dec_attention_layer = layer[1]
      feed_forward_network = layer[2]

      # Run inputs through the sublayers.
      layer_name = "layer_%d" % n
      layer_cache = cache[layer_name] if cache is not None else None
      with tf.name_scope(layer_name):
        with tf.name_scope("self_attention"):
          decoder_inputs = self_attention_layer(
              decoder_inputs,
              decoder_self_attention_bias,
              training=training,
              cache=layer_cache)
        with tf.name_scope("encdec_attention"):
          decoder_inputs = enc_dec_attention_layer(
              decoder_inputs,
              encoder_outputs,
              attention_bias,
              training=training)
        with tf.name_scope("ffn"):
          decoder_inputs = feed_forward_network(
              decoder_inputs, training=training)

    return self.output_normalization(decoder_inputs)