export_tfhub.py 6.32 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

r"""Exports the LaBSE model and its preprocessing as SavedModels for TF Hub.

Example usage:
# Point this variable to your training results.
# Note that flag --do_lower_case is inferred from the name.
LaBSE_DIR=<Your LaBSE model dir>
# Step 1: export the core LaBSE model.
python3 ./export_tfhub.py \
  --bert_config_file ${LaBSE_DIR:?}/bert_config.json \
  --model_checkpoint_path ${LaBSE_DIR:?}/labse_model.ckpt \
  --vocab_file ${LaBSE_DIR:?}/vocab.txt \
  --export_type model --export_path /tmp/labse_model
# Step 2: export matching preprocessing (be sure to use same flags).
python3 ./export_tfhub.py \
  --vocab_file ${LaBSE_DIR:?}/vocab.txt \
  --export_type preprocessing --export_path /tmp/labse_preprocessing
"""

from typing import Text

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf

from official.legacy.bert import bert_models
from official.legacy.bert import configs
from official.nlp.modeling import models
from official.nlp.tasks import utils
from official.nlp.tools import export_tfhub_lib

FLAGS = flags.FLAGS

flags.DEFINE_enum("export_type", "model", ["model", "preprocessing"],
                  "The type of model to export")
flags.DEFINE_string("export_path", None, "TF-Hub SavedModel destination path.")
flags.DEFINE_string(
    "bert_tfhub_module", None,
    "Bert tfhub module to define core bert layers. Needed for --export_type "
    "model.")
flags.DEFINE_string(
    "bert_config_file", None,
    "Bert configuration file to define core bert layers. It will not be used "
    "if bert_tfhub_module is set. Needed for --export_type model.")
flags.DEFINE_string(
    "model_checkpoint_path", None, "File path to TF model checkpoint. "
    "Needed for --export_type model.")
flags.DEFINE_string(
    "vocab_file", None,
    "The vocabulary file that the BERT model was trained on. "
    "Needed for both --export_type model and preprocessing.")
flags.DEFINE_bool(
    "do_lower_case", None,
    "Whether to lowercase before tokenization. If left as None, "
    "do_lower_case will be enabled if 'uncased' appears in the "
    "name of --vocab_file. "
    "Needed for both --export_type model and preprocessing.")
flags.DEFINE_integer(
    "default_seq_length", 128,
    "The sequence length of preprocessing results from "
    "top-level preprocess method. This is also the default "
    "sequence length for the bert_pack_inputs subobject."
    "Needed for --export_type preprocessing.")
flags.DEFINE_bool(
    "tokenize_with_offsets", False,  # TODO(b/181866850)
    "Whether to export a .tokenize_with_offsets subobject for "
    "--export_type preprocessing.")
flags.DEFINE_bool(
    "normalize", True,
    "Parameter of DualEncoder model, normalize the embedding (pooled_output) "
    "if set to True.")


def _get_do_lower_case(do_lower_case, vocab_file):
  """Returns do_lower_case, replacing None by a guess from vocab file name."""
  if do_lower_case is None:
    do_lower_case = "uncased" in vocab_file
    logging.info("Using do_lower_case=%s based on name of vocab_file=%s",
                 do_lower_case, vocab_file)
  return do_lower_case


def create_labse_model(bert_tfhub_module: Text,
                       bert_config: configs.BertConfig,
                       normalize: bool) -> tf.keras.Model:
  """Creates a LaBSE keras core model from BERT configuration.

  Args:
    bert_tfhub_module: The bert tfhub module path. The LaBSE will be built upon
      the tfhub module if it is not empty.
    bert_config: A `BertConfig` to create the core model. Used if
      bert_tfhub_module is empty.
    normalize: Parameter of DualEncoder model, normalize the embedding (
      pooled_output) if set to True.

  Returns:
    A keras model.
  """
  if bert_tfhub_module:
    encoder_network = utils.get_encoder_from_hub(bert_tfhub_module)
  else:
    encoder_network = bert_models.get_transformer_encoder(
        bert_config, sequence_length=None)

  labse_model = models.DualEncoder(
      network=encoder_network,
      max_seq_length=None,
      normalize=normalize,
      output="predictions")
  return labse_model, encoder_network  # pytype: disable=bad-return-type  # typed-keras


def export_labse_model(bert_tfhub_module: Text, bert_config: configs.BertConfig,
                       model_checkpoint_path: Text, hub_destination: Text,
                       vocab_file: Text, do_lower_case: bool, normalize: bool):
  """Restores a tf.keras.Model and saves for TF-Hub."""
  core_model, encoder = create_labse_model(
      bert_tfhub_module, bert_config, normalize)
  checkpoint = tf.train.Checkpoint(encoder=encoder)
  checkpoint.restore(model_checkpoint_path).assert_existing_objects_matched()
  core_model.vocab_file = tf.saved_model.Asset(vocab_file)
  core_model.do_lower_case = tf.Variable(do_lower_case, trainable=False)
  core_model.save(hub_destination, include_optimizer=False, save_format="tf")


def main(_):
  do_lower_case = export_tfhub_lib.get_do_lower_case(FLAGS.do_lower_case,
                                                     FLAGS.vocab_file)
  if FLAGS.export_type == "model":
    if FLAGS.bert_tfhub_module:
      bert_config = None
    else:
      bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file)
    export_labse_model(FLAGS.bert_tfhub_module, bert_config,
                       FLAGS.model_checkpoint_path, FLAGS.export_path,
                       FLAGS.vocab_file, do_lower_case, FLAGS.normalize)
  elif FLAGS.export_type == "preprocessing":
    # LaBSE is still a BERT model, reuse the export_bert_preprocessing here.
    export_tfhub_lib.export_bert_preprocessing(
        FLAGS.export_path, FLAGS.vocab_file, do_lower_case,
        FLAGS.default_seq_length, FLAGS.tokenize_with_offsets)
  else:
    raise app.UsageError("Unknown value '%s' for flag --export_type")


if __name__ == "__main__":
  app.run(main)