position_embedding.py 4.73 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based positional embedding layer."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import tensorflow as tf

from official.modeling import tf_utils


@tf.keras.utils.register_keras_serializable(package="Text")
class PositionEmbedding(tf.keras.layers.Layer):
  """Creates a positional embedding.

  This layer creates a positional embedding as described in "BERT: Pre-training
  of Deep Bidirectional Transformers for Language Understanding"
  (https://arxiv.org/abs/1810.04805).

  This layer can be set up to either create a statically shaped slice or a
  dynamically shaped slice. If `use_dynamic_slicing` is True, the input tensor
  can have a dynamic 1st dimension, while if `use_dynamic_slicing` is False the
  input size must be fixed.

40
  Arguments:
Hongkun Yu's avatar
Hongkun Yu committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    use_dynamic_slicing: Whether to use the dynamic slicing path.
    max_sequence_length: The maximum size of the dynamic sequence. Only
      applicable if `use_dynamic_slicing` is True.
    initializer: The initializer to use for the embedding weights. Defaults to
      "glorot_uniform".
  """

  def __init__(self,
               initializer="glorot_uniform",
               use_dynamic_slicing=False,
               max_sequence_length=None,
               **kwargs):
    # We need to have a default dtype of float32, since the inputs (which Keras
    # usually uses to infer the dtype) will always be int32.
    if "dtype" not in kwargs:
      kwargs["dtype"] = "float32"

    super(PositionEmbedding, self).__init__(**kwargs)
    if use_dynamic_slicing and max_sequence_length is None:
      raise ValueError(
          "If `use_dynamic_slicing` is True, `max_sequence_length` must be set."
      )
    self._max_sequence_length = max_sequence_length
    self._initializer = tf.keras.initializers.get(initializer)
    self._use_dynamic_slicing = use_dynamic_slicing

  def get_config(self):
    config = {
        "max_sequence_length": self._max_sequence_length,
        "initializer": tf.keras.initializers.serialize(self._initializer),
        "use_dynamic_slicing": self._use_dynamic_slicing,
    }
    base_config = super(PositionEmbedding, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    """Implements build() for the layer."""
    dimension_list = input_shape.as_list()

    if len(dimension_list) != 3:
      raise ValueError("PositionEmbedding expects a 3-dimensional input tensor "
                       "of shape [batch, sequence, width]")
    seq_length = dimension_list[1]
    width = dimension_list[2]

    # If we are not using dynamic slicing, we must assume that the sequence
    # length is fixed and max_sequence_length should not be specified.
    if not self._use_dynamic_slicing:
      if seq_length is None:
        raise ValueError(
            "PositionEmbedding must have `use_dynamic_slicing` set "
            "to True (and max_sequence_length set) when the "
            "sequence (1st) dimension of the input is None.")
      if self._max_sequence_length is not None:
        raise ValueError(
            "When `use_dynamic_slicing` is False, max_sequence_length should "
            "not be specified and we ought to use seq_length to get the "
            "variable shape.")

    if self._max_sequence_length is not None:
      weight_sequence_length = self._max_sequence_length
    else:
      weight_sequence_length = seq_length

    self._position_embeddings = self.add_weight(
        "embeddings",
        shape=[weight_sequence_length, width],
        initializer=self._initializer)

    super(PositionEmbedding, self).build(input_shape)

  def call(self, inputs):
    """Implements call() for the layer."""
Yichao 'Peak' Ji's avatar
Yichao 'Peak' Ji committed
114
    input_shape = tf_utils.get_shape_list(inputs, expected_rank=3)
Hongkun Yu's avatar
Hongkun Yu committed
115
    if self._use_dynamic_slicing:
Yichao 'Peak' Ji's avatar
Yichao 'Peak' Ji committed
116
      position_embeddings = self._position_embeddings[:input_shape[1], :]
Hongkun Yu's avatar
Hongkun Yu committed
117
    else:
118
      position_embeddings = self._position_embeddings
Hongkun Yu's avatar
Hongkun Yu committed
119

120
    return tf.broadcast_to(position_embeddings, input_shape)